Properties

Label 1.3_127.6t1.1c1
Dimension 1
Group $C_6$
Conductor $ 3 \cdot 127 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$381= 3 \cdot 127 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 43 x^{4} + 202 x^{3} + 1684 x^{2} + 3360 x + 6400 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{381}(146,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ a + 38 + \left(25 a + 36\right)\cdot 47 + \left(31 a + 27\right)\cdot 47^{2} + \left(13 a + 7\right)\cdot 47^{3} + \left(13 a + 2\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 2 + \left(16 a + 37\right)\cdot 47 + 21\cdot 47^{2} + \left(18 a + 11\right)\cdot 47^{3} + \left(35 a + 44\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 16 + \left(45 a + 35\right)\cdot 47 + \left(43 a + 11\right)\cdot 47^{2} + \left(23 a + 10\right)\cdot 47^{3} + \left(2 a + 24\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 34 + \left(a + 22\right)\cdot 47 + \left(3 a + 7\right)\cdot 47^{2} + \left(23 a + 14\right)\cdot 47^{3} + \left(44 a + 5\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 46 a + 40 + \left(21 a + 38\right)\cdot 47 + \left(15 a + 18\right)\cdot 47^{2} + \left(33 a + 3\right)\cdot 47^{3} + \left(33 a + 15\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 42 a + 12 + \left(30 a + 17\right)\cdot 47 + \left(46 a + 6\right)\cdot 47^{2} + 28 a\cdot 47^{3} + \left(11 a + 3\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,2,4)(3,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,6)(3,4)$$-1$
$1$$3$$(1,2,4)(3,5,6)$$\zeta_{3}$
$1$$3$$(1,4,2)(3,6,5)$$-\zeta_{3} - 1$
$1$$6$$(1,6,4,5,2,3)$$-\zeta_{3}$
$1$$6$$(1,3,2,5,4,6)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.