Properties

Label 1.3_109.6t1.1
Dimension 1
Group $C_6$
Conductor $ 3 \cdot 109 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$327= 3 \cdot 109 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 37 x^{4} + 28 x^{3} + 1300 x^{2} - 144 x + 16 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 14 + \left(9 a + 14\right)\cdot 17 + \left(6 a + 3\right)\cdot 17^{2} + \left(15 a + 7\right)\cdot 17^{3} + \left(9 a + 13\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 8 + \left(13 a + 13\right)\cdot 17 + \left(12 a + 5\right)\cdot 17^{2} + \left(13 a + 2\right)\cdot 17^{3} + \left(8 a + 5\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ a + 13 + \left(7 a + 8\right)\cdot 17 + 10 a\cdot 17^{2} + \left(a + 16\right)\cdot 17^{3} + \left(7 a + 7\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 5 + \left(3 a + 13\right)\cdot 17 + \left(4 a + 4\right)\cdot 17^{2} + \left(3 a + 3\right)\cdot 17^{3} + 8 a\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 10 + \left(6 a + 1\right)\cdot 17 + \left(10 a + 16\right)\cdot 17^{2} + 15\cdot 17^{3} + \left(2 a + 2\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 2 + \left(10 a + 16\right)\cdot 17 + \left(6 a + 2\right)\cdot 17^{2} + \left(16 a + 6\right)\cdot 17^{3} + \left(14 a + 4\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2,5)(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,3)(2,4)(5,6)$ $-1$ $-1$
$1$ $3$ $(1,2,5)(3,4,6)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,5,2)(3,6,4)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,4,5,3,2,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$1$ $6$ $(1,6,2,3,5,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.