Properties

Label 1.380.6t1.b.b
Dimension $1$
Group $C_6$
Conductor $380$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(380\)\(\medspace = 2^{2} \cdot 5 \cdot 19 \)
Artin field: Galois closure of 6.0.1042568000.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Dirichlet character: \(\chi_{380}(159,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} + 4x^{4} + 6x^{3} + 107x^{2} - 284x + 749 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \( x^{2} + 29x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 7 a + 5 + \left(7 a + 30\right)\cdot 31 + \left(20 a + 26\right)\cdot 31^{2} + \left(25 a + 13\right)\cdot 31^{3} + \left(28 a + 1\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 24 a + 19 + \left(23 a + 6\right)\cdot 31 + \left(10 a + 29\right)\cdot 31^{2} + \left(5 a + 13\right)\cdot 31^{3} + \left(2 a + 2\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 24 a + 11 + \left(23 a + 29\right)\cdot 31 + \left(10 a + 28\right)\cdot 31^{2} + \left(5 a + 15\right)\cdot 31^{3} + \left(2 a + 20\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 7 a + 28 + \left(7 a + 21\right)\cdot 31 + \left(20 a + 26\right)\cdot 31^{2} + \left(25 a + 15\right)\cdot 31^{3} + \left(28 a + 19\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 7 a + 9 + \left(7 a + 14\right)\cdot 31 + \left(20 a + 20\right)\cdot 31^{2} + \left(25 a + 16\right)\cdot 31^{3} + \left(28 a + 8\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 24 a + 23 + \left(23 a + 21\right)\cdot 31 + \left(10 a + 22\right)\cdot 31^{2} + \left(5 a + 16\right)\cdot 31^{3} + \left(2 a + 9\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,4,2,5,3)$
$(1,2)(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)(3,4)(5,6)$$-1$
$1$$3$$(1,4,5)(2,3,6)$$-\zeta_{3} - 1$
$1$$3$$(1,5,4)(2,6,3)$$\zeta_{3}$
$1$$6$$(1,6,4,2,5,3)$$-\zeta_{3}$
$1$$6$$(1,3,5,2,4,6)$$\zeta_{3} + 1$

The blue line marks the conjugacy class containing complex conjugation.