Properties

Label 1.37_67.6t1.1
Dimension 1
Group $C_6$
Conductor $ 37 \cdot 67 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$2479= 37 \cdot 67 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 26 x^{4} + 13 x^{3} + 983 x^{2} - 2216 x + 14737 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 26 + \left(13 a + 3\right)\cdot 31 + \left(28 a + 30\right)\cdot 31^{2} + \left(6 a + 24\right)\cdot 31^{3} + \left(11 a + 6\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 20 + \left(13 a + 10\right)\cdot 31 + \left(28 a + 16\right)\cdot 31^{2} + \left(6 a + 7\right)\cdot 31^{3} + \left(11 a + 7\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 13 + \left(17 a + 12\right)\cdot 31 + \left(2 a + 9\right)\cdot 31^{2} + \left(24 a + 21\right)\cdot 31^{3} + \left(19 a + 24\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 2 + \left(17 a + 12\right)\cdot 31 + \left(2 a + 11\right)\cdot 31^{2} + \left(24 a + 10\right)\cdot 31^{3} + \left(19 a + 22\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 19 a + 6 + \left(13 a + 4\right)\cdot 31 + \left(28 a + 28\right)\cdot 31^{2} + \left(6 a + 4\right)\cdot 31^{3} + \left(11 a + 9\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 27 + \left(17 a + 18\right)\cdot 31 + \left(2 a + 28\right)\cdot 31^{2} + \left(24 a + 23\right)\cdot 31^{3} + \left(19 a + 22\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,2,4,5,6)$
$(1,4)(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,4)(2,6)(3,5)$ $-1$ $-1$
$1$ $3$ $(1,2,5)(3,4,6)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,5,2)(3,6,4)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,3,2,4,5,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,6,5,4,2,3)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.