Properties

Label 1.37_229.6t1.1c1
Dimension 1
Group $C_6$
Conductor $ 37 \cdot 229 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$8473= 37 \cdot 229 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 196 x^{4} + 161 x^{3} + 9937 x^{2} + 1484 x - 115799 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even
Corresponding Dirichlet character: \(\chi_{8473}(5724,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 5 + \left(15 a + 20\right)\cdot 23 + 20 a\cdot 23^{2} + \left(20 a + 3\right)\cdot 23^{3} + \left(15 a + 9\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 15 + \left(15 a + 1\right)\cdot 23 + \left(20 a + 15\right)\cdot 23^{2} + \left(20 a + 8\right)\cdot 23^{3} + \left(15 a + 22\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 17 + \left(7 a + 21\right)\cdot 23 + \left(2 a + 3\right)\cdot 23^{2} + \left(2 a + 1\right)\cdot 23^{3} + \left(7 a + 20\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 4 + \left(7 a + 3\right)\cdot 23 + \left(2 a + 18\right)\cdot 23^{2} + \left(2 a + 6\right)\cdot 23^{3} + \left(7 a + 10\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 9 + 7 a\cdot 23 + \left(2 a + 17\right)\cdot 23^{2} + 2 a\cdot 23^{3} + \left(7 a + 9\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 20 + \left(15 a + 21\right)\cdot 23 + \left(20 a + 13\right)\cdot 23^{2} + \left(20 a + 2\right)\cdot 23^{3} + \left(15 a + 21\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)(3,4,5)$
$(1,3)(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)(5,6)$$-1$
$1$$3$$(1,2,6)(3,4,5)$$-\zeta_{3} - 1$
$1$$3$$(1,6,2)(3,5,4)$$\zeta_{3}$
$1$$6$$(1,4,6,3,2,5)$$\zeta_{3} + 1$
$1$$6$$(1,5,2,3,6,4)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.