Properties

Label 1.379.7t1.1c1
Dimension 1
Group $C_7$
Conductor $ 379 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_7$
Conductor:$379 $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 162 x^{5} + 201 x^{4} + 7822 x^{3} - 12322 x^{2} - 107717 x + 193369 $ over $\Q$
Size of Galois orbit: 6
Smallest containing permutation representation: $C_7$
Parity: Even
Corresponding Dirichlet character: \(\chi_{379}(119,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{7} + 3 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ a^{6} + 10 a^{5} + 8 a^{4} + 3 a^{3} + 5 a^{2} + 3 a + 12 + \left(2 a^{6} + 12 a^{5} + 8 a^{4} + 3 a^{3} + 6 a^{2} + 11 a + 10\right)\cdot 13 + \left(2 a^{6} + 5 a^{5} + 3 a^{4} + 6 a^{3} + a^{2} + 7 a + 1\right)\cdot 13^{2} + \left(12 a^{6} + 4 a^{5} + a^{3} + 7 a^{2} + 5 a + 7\right)\cdot 13^{3} + \left(6 a^{6} + a^{5} + 8 a^{4} + 12 a^{2} + 6 a + 8\right)\cdot 13^{4} + \left(7 a^{6} + 12 a^{5} + 12 a^{4} + 8 a^{3} + a^{2} + 2\right)\cdot 13^{5} + \left(a^{6} + 7 a^{5} + 7 a^{4} + 3 a^{3} + 8 a^{2} + 8 a + 2\right)\cdot 13^{6} + \left(8 a^{6} + 4 a^{5} + 9 a^{4} + 4 a^{3} + 12 a^{2} + 4 a + 4\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 3 a^{6} + 2 a^{5} + 10 a^{4} + 7 a^{3} + 7 a^{2} + 2 a + 6 + \left(10 a^{6} + 6 a^{5} + a^{4} + 3 a^{3} + 12 a^{2} + 3 a + 11\right)\cdot 13 + \left(7 a^{5} + 2 a^{4} + 11 a^{3} + 5 a^{2} + a + 3\right)\cdot 13^{2} + \left(7 a^{6} + 7 a^{5} + 2 a^{3} + 10 a^{2} + 8 a + 3\right)\cdot 13^{3} + \left(12 a^{6} + 9 a^{5} + 2 a^{4} + a^{3} + 9 a^{2} + 9 a + 6\right)\cdot 13^{4} + \left(6 a^{6} + 5 a^{5} + 9 a^{4} + 12 a^{3} + 2 a^{2} + 12 a + 10\right)\cdot 13^{5} + \left(9 a^{6} + 4 a^{5} + 7 a^{4} + 12 a^{3} + 10 a^{2} + 12 a + 7\right)\cdot 13^{6} + \left(4 a^{6} + 8 a^{5} + 2 a^{4} + 6 a^{3} + 5 a^{2} + 12 a + 6\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{6} + 8 a^{4} + 12 a^{3} + 5 a^{2} + 2 a + 7 + \left(10 a^{6} + 11 a^{5} + 4 a^{3} + 3 a + 8\right)\cdot 13 + \left(7 a^{6} + 10 a^{5} + 7 a^{4} + 5 a^{3} + 2 a^{2} + 5 a + 12\right)\cdot 13^{2} + \left(6 a^{6} + 7 a^{4} + 5 a^{3} + 3 a^{2} + 12 a + 3\right)\cdot 13^{3} + \left(4 a^{6} + 6 a^{5} + 9 a^{4} + 5 a^{3} + 2 a^{2} + a + 2\right)\cdot 13^{4} + \left(12 a^{6} + 5 a^{5} + a^{3} + 3 a^{2}\right)\cdot 13^{5} + \left(4 a^{6} + 9 a^{5} + 4 a^{4} + 7 a^{3} + 7 a^{2} + 2 a + 9\right)\cdot 13^{6} + \left(12 a^{6} + 12 a^{5} + 12 a^{3} + 4 a^{2} + 3 a + 7\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 8 a^{6} + 9 a^{5} + 12 a^{3} + 4 a^{2} + 4 + \left(7 a^{6} + 3 a^{5} + 5 a^{4} + 8 a^{3} + 10 a^{2} + 6 a + 10\right)\cdot 13 + \left(7 a^{6} + 10 a^{5} + 2 a^{4} + 9 a^{3} + 5 a^{2} + 6 a + 2\right)\cdot 13^{2} + \left(8 a^{6} + 6 a^{5} + 4 a^{4} + 9 a^{3} + 10 a^{2} + 8 a + 7\right)\cdot 13^{3} + \left(5 a^{6} + 5 a^{4} + 11 a^{3} + 5 a^{2} + 4 a + 1\right)\cdot 13^{4} + \left(3 a^{4} + 9 a^{2} + 1\right)\cdot 13^{5} + \left(4 a^{6} + 3 a^{5} + a^{4} + 5 a^{3} + 8 a^{2} + a + 1\right)\cdot 13^{6} + \left(11 a^{6} + 10 a^{5} + 7 a^{4} + 8 a^{3} + 10 a^{2} + 12 a + 3\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 9 a^{6} + 7 a^{5} + 9 a^{4} + 9 a^{3} + 4 a^{2} + 11 a + 1 + \left(7 a^{5} + 12 a^{4} + 11 a^{2} + 11\right)\cdot 13 + \left(5 a^{6} + 11 a^{5} + 11 a^{4} + 3 a^{3} + 12 a^{2} + 4 a + 1\right)\cdot 13^{2} + \left(7 a^{6} + 11 a^{5} + 10 a^{4} + 8 a^{3} + 12 a^{2} + 6 a + 4\right)\cdot 13^{3} + \left(5 a^{5} + 5 a^{4} + 11 a^{3} + 8 a^{2} + 10 a + 3\right)\cdot 13^{4} + \left(11 a^{6} + 5 a^{5} + 2 a^{4} + 10 a^{3} + 6 a^{2} + 5 a + 4\right)\cdot 13^{5} + \left(a^{5} + 11 a^{4} + 2 a^{3} + 10 a^{2} + 9 a\right)\cdot 13^{6} + \left(a^{6} + a^{5} + 5 a^{4} + 10 a^{3} + a^{2} + 9 a + 12\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 12 a^{6} + 12 a^{5} + 6 a^{4} + 7 a^{3} + 11 a^{2} + 12 a + 5 + \left(11 a^{6} + 11 a^{5} + 10 a^{4} + 11 a^{3} + 9 a^{2} + 7 a + 8\right)\cdot 13 + \left(7 a^{6} + 4 a^{5} + 6 a^{4} + 12 a^{3} + 8 a^{2} + 12 a + 3\right)\cdot 13^{2} + \left(10 a^{6} + 10 a^{5} + 10 a^{4} + 10 a^{3} + 4 a^{2} + 6 a + 1\right)\cdot 13^{3} + \left(3 a^{6} + 8 a^{5} + 10 a^{4} + a^{3} + 9 a^{2} + 6\right)\cdot 13^{4} + \left(12 a^{6} + 4 a^{5} + 10 a^{4} + 4 a^{3} + a^{2} + 7\right)\cdot 13^{5} + \left(7 a^{6} + 12 a^{5} + 4 a^{4} + 6 a^{3} + 12 a^{2} + a + 5\right)\cdot 13^{6} + \left(2 a^{6} + 4 a^{5} + 10 a^{4} + 3 a^{3} + 2 a^{2} + a + 10\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 12 a^{6} + 12 a^{5} + 11 a^{4} + 2 a^{3} + 3 a^{2} + 9 a + 5 + \left(8 a^{6} + 11 a^{5} + 12 a^{4} + 6 a^{3} + a^{2} + 6 a + 4\right)\cdot 13 + \left(7 a^{6} + 4 a^{4} + 3 a^{3} + 2 a^{2} + a + 12\right)\cdot 13^{2} + \left(12 a^{6} + 10 a^{5} + 5 a^{4} + 3 a^{2} + 4 a + 11\right)\cdot 13^{3} + \left(4 a^{6} + 6 a^{5} + 10 a^{4} + 7 a^{3} + 3 a^{2} + 5 a + 10\right)\cdot 13^{4} + \left(a^{6} + 5 a^{5} + 12 a^{4} + a^{3} + 6 a + 12\right)\cdot 13^{5} + \left(10 a^{6} + a^{4} + a^{3} + 8 a^{2} + 4 a + 12\right)\cdot 13^{6} + \left(11 a^{6} + 10 a^{5} + 3 a^{4} + 6 a^{3} + 8 a + 7\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,6,3,4,5,2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$1$
$1$$7$$(1,6,3,4,5,2,7)$$\zeta_{7}$
$1$$7$$(1,3,5,7,6,4,2)$$\zeta_{7}^{2}$
$1$$7$$(1,4,7,3,2,6,5)$$\zeta_{7}^{3}$
$1$$7$$(1,5,6,2,3,7,4)$$\zeta_{7}^{4}$
$1$$7$$(1,2,4,6,7,5,3)$$\zeta_{7}^{5}$
$1$$7$$(1,7,2,5,4,3,6)$$-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - \zeta_{7} - 1$
The blue line marks the conjugacy class containing complex conjugation.