# Properties

 Label 1.3215.2t1.a.a Dimension 1 Group $C_2$ Conductor $5 \cdot 643$ Root number 1 Frobenius-Schur indicator 1

# Related objects

## Basic invariants

 Dimension: $1$ Group: $C_2$ Conductor: $3215= 5 \cdot 643$ Artin number field: Splitting field of $$\Q(\sqrt{-3215})$$ defined by $f= x^{2} - x + 804$ over $\Q$ Size of Galois orbit: 1 Smallest containing permutation representation: $C_2$ Parity: Odd Corresponding Dirichlet character: $$\displaystyle\left(\frac{-3215}{\bullet}\right)$$ Projective image: $C_1$ Projective field: $$\Q$$

## Galois action

### Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 3 }$ to precision 5.
Roots:
 $r_{ 1 }$ $=$ $3 + 3^{4} +O\left(3^{ 5 }\right)$ $r_{ 2 }$ $=$ $1 + 2\cdot 3 + 2\cdot 3^{2} + 2\cdot 3^{3} + 3^{4} +O\left(3^{ 5 }\right)$

### Generators of the action on the roots $r_{ 1 }, r_{ 2 }$

 Cycle notation $(1,2)$

### Character values on conjugacy classes

 Size Order Action on $r_{ 1 }, r_{ 2 }$ Character value $1$ $1$ $()$ $1$ $1$ $2$ $(1,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.