Properties

Label 1.31_67.6t1.1c1
Dimension 1
Group $C_6$
Conductor $ 31 \cdot 67 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$2077= 31 \cdot 67 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 21 x^{4} + 39 x^{3} + 663 x^{2} - 1355 x + 7375 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{2077}(1704,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 17 + \left(36 a + 8\right)\cdot 43 + \left(12 a + 11\right)\cdot 43^{2} + \left(38 a + 38\right)\cdot 43^{3} + \left(21 a + 39\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 33 + \left(36 a + 32\right)\cdot 43 + \left(12 a + 4\right)\cdot 43^{2} + \left(38 a + 25\right)\cdot 43^{3} + \left(21 a + 16\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 23 + \left(36 a + 25\right)\cdot 43 + \left(12 a + 40\right)\cdot 43^{2} + \left(38 a + 5\right)\cdot 43^{3} + \left(21 a + 11\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 34 a + 32 + \left(6 a + 9\right)\cdot 43 + \left(30 a + 17\right)\cdot 43^{2} + \left(4 a + 31\right)\cdot 43^{3} + \left(21 a + 37\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 34 a + 26 + \left(6 a + 35\right)\cdot 43 + \left(30 a + 30\right)\cdot 43^{2} + \left(4 a + 20\right)\cdot 43^{3} + \left(21 a + 23\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 34 a + 42 + \left(6 a + 16\right)\cdot 43 + \left(30 a + 24\right)\cdot 43^{2} + \left(4 a + 7\right)\cdot 43^{3} + 21 a\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,6)(3,4)$$-1$
$1$$3$$(1,2,3)(4,5,6)$$\zeta_{3}$
$1$$3$$(1,3,2)(4,6,5)$$-\zeta_{3} - 1$
$1$$6$$(1,6,3,5,2,4)$$-\zeta_{3}$
$1$$6$$(1,4,2,5,3,6)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.