Properties

Label 1.31_59.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 31 \cdot 59 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$1829= 31 \cdot 59 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 24 x^{4} - 25 x^{3} + 768 x^{2} + 247 x + 9239 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{1829}(1710,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 13 + \left(15 a + 19\right)\cdot 23 + \left(15 a + 9\right)\cdot 23^{2} + \left(8 a + 12\right)\cdot 23^{3} + \left(16 a + 1\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 7 + \left(15 a + 8\right)\cdot 23 + \left(15 a + 7\right)\cdot 23^{2} + \left(8 a + 20\right)\cdot 23^{3} + \left(16 a + 1\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 8 + \left(15 a + 21\right)\cdot 23 + \left(15 a + 4\right)\cdot 23^{2} + \left(8 a + 22\right)\cdot 23^{3} + \left(16 a + 17\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 5 + \left(7 a + 19\right)\cdot 23 + \left(7 a + 20\right)\cdot 23^{2} + 14 a\cdot 23^{3} + \left(6 a + 19\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 10 + \left(7 a + 17\right)\cdot 23 + \left(7 a + 2\right)\cdot 23^{2} + \left(14 a + 14\right)\cdot 23^{3} + \left(6 a + 2\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 4 + \left(7 a + 6\right)\cdot 23 + 7 a\cdot 23^{2} + \left(14 a + 22\right)\cdot 23^{3} + \left(6 a + 2\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,6)(3,4)$$-1$
$1$$3$$(1,2,3)(4,5,6)$$-\zeta_{3} - 1$
$1$$3$$(1,3,2)(4,6,5)$$\zeta_{3}$
$1$$6$$(1,6,3,5,2,4)$$\zeta_{3} + 1$
$1$$6$$(1,4,2,5,3,6)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.