Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 a^{2} + 7 a + 3 + \left(3 a^{2} + 16 a + 16\right)\cdot 17 + \left(6 a^{2} + 10 a + 8\right)\cdot 17^{2} + \left(14 a^{2} + 9 a + 15\right)\cdot 17^{3} + \left(15 a^{2} + 13 a + 1\right)\cdot 17^{4} + \left(16 a^{2} + 14 a + 10\right)\cdot 17^{5} + \left(10 a^{2} + 3 a + 13\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ a + 8 + \left(14 a^{2} + 12 a + 2\right)\cdot 17 + \left(11 a^{2} + 2 a + 14\right)\cdot 17^{2} + \left(13 a^{2} + 7 a + 4\right)\cdot 17^{3} + \left(3 a^{2} + 8 a + 4\right)\cdot 17^{4} + \left(3 a + 4\right)\cdot 17^{5} + \left(12 a^{2} + 4 a\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 4 a^{2} + 9 a + 5 + \left(9 a^{2} + 9 a + 16\right)\cdot 17 + \left(15 a^{2} + a + 10\right)\cdot 17^{2} + \left(2 a^{2} + 12 a + 14\right)\cdot 17^{3} + \left(15 a + 1\right)\cdot 17^{4} + \left(3 a^{2} + 12 a + 6\right)\cdot 17^{5} + \left(12 a^{2} + 6 a\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 7 a^{2} + 8 a + 4 + \left(7 a^{2} + 4 a + 7\right)\cdot 17 + \left(7 a^{2} + 9 a + 15\right)\cdot 17^{2} + \left(9 a^{2} + 4 a\right)\cdot 17^{3} + \left(12 a + 3\right)\cdot 17^{4} + \left(8 a^{2} + 7 a + 4\right)\cdot 17^{5} + \left(10 a^{2} + 3 a + 13\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 13 a^{2} + 2 a + 8 + \left(5 a^{2} + 13 a\right)\cdot 17 + \left(3 a^{2} + 13 a + 7\right)\cdot 17^{2} + \left(10 a^{2} + 2 a + 1\right)\cdot 17^{3} + \left(8 a + 3\right)\cdot 17^{4} + \left(9 a^{2} + 11 a + 16\right)\cdot 17^{5} + \left(12 a^{2} + 9 a + 8\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 15 a^{2} + 12 a + 3 + \left(10 a^{2} + 12 a + 6\right)\cdot 17 + \left(13 a^{2} + 10 a + 9\right)\cdot 17^{2} + \left(3 a^{2} + 16 a + 6\right)\cdot 17^{3} + \left(11 a^{2} + 4 a + 14\right)\cdot 17^{4} + \left(2 a^{2} + 15 a + 15\right)\cdot 17^{5} + \left(a^{2} + 9 a + 7\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 2 a^{2} + 13 a + \left(11 a^{2} + 11 a + 12\right)\cdot 17 + 15 a\cdot 17^{2} + \left(2 a^{2} + 10 a + 11\right)\cdot 17^{3} + \left(2 a^{2} + 6 a + 2\right)\cdot 17^{4} + \left(2 a^{2} + 10 a + 4\right)\cdot 17^{5} + \left(12 a^{2} + 8 a + 15\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 13 a^{2} + 7 a + 11 + \left(10 a^{2} + 12 a + 11\right)\cdot 17 + \left(6 a^{2} + 12 a + 10\right)\cdot 17^{2} + \left(14 a + 1\right)\cdot 17^{3} + \left(13 a^{2} + 9 a + 16\right)\cdot 17^{4} + \left(13 a^{2} + 1\right)\cdot 17^{5} + \left(9 a^{2} + 6 a + 10\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ 9 a + 10 + \left(12 a^{2} + 9 a + 12\right)\cdot 17 + \left(2 a^{2} + 7 a + 7\right)\cdot 17^{2} + \left(11 a^{2} + 6 a + 11\right)\cdot 17^{3} + \left(3 a^{2} + 5 a + 3\right)\cdot 17^{4} + \left(12 a^{2} + 8 a + 5\right)\cdot 17^{5} + \left(3 a^{2} + 15 a + 15\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 9 }$
| Cycle notation |
| $(1,2,7,5,8,9,4,3,6)$ |
| $(1,5,4)(2,8,3)(6,7,9)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 9 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $3$ | $(1,5,4)(2,8,3)(6,7,9)$ | $\zeta_{9}^{3}$ |
| $1$ | $3$ | $(1,4,5)(2,3,8)(6,9,7)$ | $-\zeta_{9}^{3} - 1$ |
| $1$ | $9$ | $(1,2,7,5,8,9,4,3,6)$ | $\zeta_{9}$ |
| $1$ | $9$ | $(1,7,8,4,6,2,5,9,3)$ | $\zeta_{9}^{2}$ |
| $1$ | $9$ | $(1,8,6,5,3,7,4,2,9)$ | $\zeta_{9}^{4}$ |
| $1$ | $9$ | $(1,9,2,4,7,3,5,6,8)$ | $\zeta_{9}^{5}$ |
| $1$ | $9$ | $(1,3,9,5,2,6,4,8,7)$ | $-\zeta_{9}^{4} - \zeta_{9}$ |
| $1$ | $9$ | $(1,6,3,4,9,8,5,7,2)$ | $-\zeta_{9}^{5} - \zeta_{9}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.