Properties

Label 1.2e5_7.8t1.2c3
Dimension 1
Group $C_8$
Conductor $ 2^{5} \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$224= 2^{5} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} + 56 x^{6} + 980 x^{4} + 5488 x^{2} + 4802 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{224}(69,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 1 + 23\cdot 47 + 24\cdot 47^{2} + 10\cdot 47^{3} + 45\cdot 47^{4} + 30\cdot 47^{5} + 5\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 17 + 8\cdot 47 + 45\cdot 47^{2} + 23\cdot 47^{3} + 2\cdot 47^{4} + 9\cdot 47^{5} + 23\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 21 + 30\cdot 47 + 19\cdot 47^{2} + 2\cdot 47^{3} + 12\cdot 47^{4} + 23\cdot 47^{5} + 17\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 23 + 8\cdot 47 + 27\cdot 47^{2} + 22\cdot 47^{3} + 34\cdot 47^{4} + 20\cdot 47^{5} + 14\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 24 + 38\cdot 47 + 19\cdot 47^{2} + 24\cdot 47^{3} + 12\cdot 47^{4} + 26\cdot 47^{5} + 32\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 26 + 16\cdot 47 + 27\cdot 47^{2} + 44\cdot 47^{3} + 34\cdot 47^{4} + 23\cdot 47^{5} + 29\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 30 + 38\cdot 47 + 47^{2} + 23\cdot 47^{3} + 44\cdot 47^{4} + 37\cdot 47^{5} + 23\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 46 + 23\cdot 47 + 22\cdot 47^{2} + 36\cdot 47^{3} + 47^{4} + 16\cdot 47^{5} + 41\cdot 47^{6} +O\left(47^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,8,3)(2,4,7,5)$
$(1,5,3,7,8,4,6,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-1$
$1$$4$$(1,3,8,6)(2,5,7,4)$$\zeta_{8}^{2}$
$1$$4$$(1,6,8,3)(2,4,7,5)$$-\zeta_{8}^{2}$
$1$$8$$(1,5,3,7,8,4,6,2)$$-\zeta_{8}$
$1$$8$$(1,7,6,5,8,2,3,4)$$-\zeta_{8}^{3}$
$1$$8$$(1,4,3,2,8,5,6,7)$$\zeta_{8}$
$1$$8$$(1,2,6,4,8,7,3,5)$$\zeta_{8}^{3}$
The blue line marks the conjugacy class containing complex conjugation.