Properties

Label 1.2e5_7.8t1.1c2
Dimension 1
Group $C_8$
Conductor $ 2^{5} \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$224= 2^{5} \cdot 7 $
Artin number field: Splitting field of $f= x^{8} - 56 x^{6} + 980 x^{4} - 5488 x^{2} + 4802 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Even
Corresponding Dirichlet character: \(\chi_{224}(139,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 3 + 18\cdot 31 + 30\cdot 31^{2} + 23\cdot 31^{3} + 13\cdot 31^{4} + 16\cdot 31^{5} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 7 + 11\cdot 31 + 26\cdot 31^{2} + 31^{3} + 6\cdot 31^{4} + 28\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 9 + 18\cdot 31 + 29\cdot 31^{2} + 20\cdot 31^{3} + 20\cdot 31^{4} + 27\cdot 31^{5} + 5\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 14 + 2\cdot 31 + 25\cdot 31^{3} + 29\cdot 31^{4} + 5\cdot 31^{5} + 11\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 17 + 28\cdot 31 + 30\cdot 31^{2} + 5\cdot 31^{3} + 31^{4} + 25\cdot 31^{5} + 19\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 22 + 12\cdot 31 + 31^{2} + 10\cdot 31^{3} + 10\cdot 31^{4} + 3\cdot 31^{5} + 25\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 24 + 19\cdot 31 + 4\cdot 31^{2} + 29\cdot 31^{3} + 24\cdot 31^{4} + 30\cdot 31^{5} + 2\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 28 + 12\cdot 31 + 7\cdot 31^{3} + 17\cdot 31^{4} + 14\cdot 31^{5} + 30\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,6,7,8,5,3,2)$
$(1,3,8,6)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-1$
$1$$4$$(1,6,8,3)(2,4,7,5)$$-\zeta_{8}^{2}$
$1$$4$$(1,3,8,6)(2,5,7,4)$$\zeta_{8}^{2}$
$1$$8$$(1,4,6,7,8,5,3,2)$$\zeta_{8}^{3}$
$1$$8$$(1,7,3,4,8,2,6,5)$$\zeta_{8}$
$1$$8$$(1,5,6,2,8,4,3,7)$$-\zeta_{8}^{3}$
$1$$8$$(1,2,3,5,8,7,6,4)$$-\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.