Properties

Label 1.2e5_5.8t1.6c4
Dimension 1
Group $C_8$
Conductor $ 2^{5} \cdot 5 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$160= 2^{5} \cdot 5 $
Artin number field: Splitting field of $f= x^{8} + 40 x^{6} + 500 x^{4} + 2000 x^{2} + 2450 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{160}(53,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 1 + 7\cdot 23 + 12\cdot 23^{2} + 12\cdot 23^{3} + 13\cdot 23^{4} + 7\cdot 23^{5} + 14\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 5 + 3\cdot 23 + 10\cdot 23^{2} + 20\cdot 23^{3} + 2\cdot 23^{4} + 9\cdot 23^{5} + 3\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 8 + 18\cdot 23 + 2\cdot 23^{2} + 15\cdot 23^{3} + 7\cdot 23^{4} + 14\cdot 23^{5} + 7\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 10 + 22\cdot 23 + 7\cdot 23^{2} + 22\cdot 23^{3} + 14\cdot 23^{4} + 2\cdot 23^{5} + 9\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 13 + 15\cdot 23^{2} + 8\cdot 23^{4} + 20\cdot 23^{5} + 13\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 15 + 4\cdot 23 + 20\cdot 23^{2} + 7\cdot 23^{3} + 15\cdot 23^{4} + 8\cdot 23^{5} + 15\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 18 + 19\cdot 23 + 12\cdot 23^{2} + 2\cdot 23^{3} + 20\cdot 23^{4} + 13\cdot 23^{5} + 19\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 22 + 15\cdot 23 + 10\cdot 23^{2} + 10\cdot 23^{3} + 9\cdot 23^{4} + 15\cdot 23^{5} + 8\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,7,5,8,3,2,4)$
$(1,2,8,7)(3,5,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-1$
$1$$4$$(1,7,8,2)(3,4,6,5)$$-\zeta_{8}^{2}$
$1$$4$$(1,2,8,7)(3,5,6,4)$$\zeta_{8}^{2}$
$1$$8$$(1,6,7,5,8,3,2,4)$$-\zeta_{8}^{3}$
$1$$8$$(1,5,2,6,8,4,7,3)$$-\zeta_{8}$
$1$$8$$(1,3,7,4,8,6,2,5)$$\zeta_{8}^{3}$
$1$$8$$(1,4,2,3,8,5,7,6)$$\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.