Properties

Label 1.2e5_5.8t1.5c2
Dimension 1
Group $C_8$
Conductor $ 2^{5} \cdot 5 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$160= 2^{5} \cdot 5 $
Artin number field: Splitting field of $f= x^{8} - 40 x^{6} + 500 x^{4} - 2000 x^{2} + 2450 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Even
Corresponding Dirichlet character: \(\chi_{160}(43,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 34\cdot 73 + 14\cdot 73^{2} + 21\cdot 73^{3} + 8\cdot 73^{4} + 18\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 4 + 56\cdot 73 + 3\cdot 73^{2} + 40\cdot 73^{3} + 41\cdot 73^{4} + 10\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 23 + 10\cdot 73 + 4\cdot 73^{2} + 20\cdot 73^{3} + 13\cdot 73^{4} + 66\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 32 + 21\cdot 73 + 59\cdot 73^{2} + 4\cdot 73^{3} + 21\cdot 73^{4} + 57\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 41 + 51\cdot 73 + 13\cdot 73^{2} + 68\cdot 73^{3} + 51\cdot 73^{4} + 15\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 50 + 62\cdot 73 + 68\cdot 73^{2} + 52\cdot 73^{3} + 59\cdot 73^{4} + 6\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 69 + 16\cdot 73 + 69\cdot 73^{2} + 32\cdot 73^{3} + 31\cdot 73^{4} + 62\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 71 + 38\cdot 73 + 58\cdot 73^{2} + 51\cdot 73^{3} + 64\cdot 73^{4} + 54\cdot 73^{5} +O\left(73^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,7,5,8,6,2,4)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-1$
$1$$4$$(1,7,8,2)(3,5,6,4)$$-\zeta_{8}^{2}$
$1$$4$$(1,2,8,7)(3,4,6,5)$$\zeta_{8}^{2}$
$1$$8$$(1,3,7,5,8,6,2,4)$$\zeta_{8}^{3}$
$1$$8$$(1,5,2,3,8,4,7,6)$$\zeta_{8}$
$1$$8$$(1,6,7,4,8,3,2,5)$$-\zeta_{8}^{3}$
$1$$8$$(1,4,2,6,8,5,7,3)$$-\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.