Properties

Label 1.2e5_5.8t1.4c4
Dimension 1
Group $C_8$
Conductor $ 2^{5} \cdot 5 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$160= 2^{5} \cdot 5 $
Artin number field: Splitting field of $f= x^{8} + 40 x^{6} + 500 x^{4} + 2000 x^{2} + 1250 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{160}(99,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 48\cdot 79 + 22\cdot 79^{3} + 43\cdot 79^{4} + 75\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 6 + 16\cdot 79 + 67\cdot 79^{2} + 56\cdot 79^{3} + 41\cdot 79^{4} + 6\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 23 + 18\cdot 79 + 13\cdot 79^{2} + 54\cdot 79^{3} + 65\cdot 79^{4} + 47\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 24 + 9\cdot 79 + 60\cdot 79^{2} + 5\cdot 79^{3} + 64\cdot 79^{4} + 71\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 55 + 69\cdot 79 + 18\cdot 79^{2} + 73\cdot 79^{3} + 14\cdot 79^{4} + 7\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 56 + 60\cdot 79 + 65\cdot 79^{2} + 24\cdot 79^{3} + 13\cdot 79^{4} + 31\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 73 + 62\cdot 79 + 11\cdot 79^{2} + 22\cdot 79^{3} + 37\cdot 79^{4} + 72\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 77 + 30\cdot 79 + 78\cdot 79^{2} + 56\cdot 79^{3} + 35\cdot 79^{4} + 3\cdot 79^{5} +O\left(79^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,2,6,5,8,7,3,4)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-1$
$1$$4$$(1,6,8,3)(2,5,7,4)$$-\zeta_{8}^{2}$
$1$$4$$(1,3,8,6)(2,4,7,5)$$\zeta_{8}^{2}$
$1$$8$$(1,2,6,5,8,7,3,4)$$-\zeta_{8}^{3}$
$1$$8$$(1,5,3,2,8,4,6,7)$$-\zeta_{8}$
$1$$8$$(1,7,6,4,8,2,3,5)$$\zeta_{8}^{3}$
$1$$8$$(1,4,3,7,8,5,6,2)$$\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.