Properties

Label 1.2e5_5.8t1.3c3
Dimension 1
Group $C_8$
Conductor $ 2^{5} \cdot 5 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$160= 2^{5} \cdot 5 $
Artin number field: Splitting field of $f= x^{8} - 40 x^{6} + 500 x^{4} - 2000 x^{2} + 1250 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Even
Corresponding Dirichlet character: \(\chi_{160}(149,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 2 + 20\cdot 31 + 9\cdot 31^{2} + 25\cdot 31^{3} + 3\cdot 31^{4} + 20\cdot 31^{5} + 12\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 4 + 21\cdot 31 + 25\cdot 31^{2} + 20\cdot 31^{3} + 26\cdot 31^{4} + 14\cdot 31^{5} + 15\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 7 + 2\cdot 31 + 25\cdot 31^{2} + 17\cdot 31^{3} + 14\cdot 31^{4} + 23\cdot 31^{5} + 8\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 8 + 3\cdot 31^{2} + 11\cdot 31^{3} + 30\cdot 31^{4} + 19\cdot 31^{5} + 6\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 23 + 30\cdot 31 + 27\cdot 31^{2} + 19\cdot 31^{3} + 11\cdot 31^{5} + 24\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 24 + 28\cdot 31 + 5\cdot 31^{2} + 13\cdot 31^{3} + 16\cdot 31^{4} + 7\cdot 31^{5} + 22\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 27 + 9\cdot 31 + 5\cdot 31^{2} + 10\cdot 31^{3} + 4\cdot 31^{4} + 16\cdot 31^{5} + 15\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 29 + 10\cdot 31 + 21\cdot 31^{2} + 5\cdot 31^{3} + 27\cdot 31^{4} + 10\cdot 31^{5} + 18\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,4,6,5)$
$(1,3,7,4,8,6,2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-1$
$1$$4$$(1,7,8,2)(3,4,6,5)$$\zeta_{8}^{2}$
$1$$4$$(1,2,8,7)(3,5,6,4)$$-\zeta_{8}^{2}$
$1$$8$$(1,3,7,4,8,6,2,5)$$-\zeta_{8}$
$1$$8$$(1,4,2,3,8,5,7,6)$$-\zeta_{8}^{3}$
$1$$8$$(1,6,7,5,8,3,2,4)$$\zeta_{8}$
$1$$8$$(1,5,2,6,8,4,7,3)$$\zeta_{8}^{3}$
The blue line marks the conjugacy class containing complex conjugation.