Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 23 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 19\cdot 23 + 7\cdot 23^{2} + 8\cdot 23^{3} + 19\cdot 23^{4} + 22\cdot 23^{5} + 4\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 + 2\cdot 23 + 5\cdot 23^{2} + 23^{3} + 7\cdot 23^{4} + 18\cdot 23^{5} + 18\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 5 + 8\cdot 23 + 6\cdot 23^{2} + 12\cdot 23^{3} + 23^{4} + 17\cdot 23^{5} + 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 8 + 2\cdot 23 + 19\cdot 23^{2} + 5\cdot 23^{3} + 12\cdot 23^{4} + 14\cdot 23^{5} + 13\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 15 + 20\cdot 23 + 3\cdot 23^{2} + 17\cdot 23^{3} + 10\cdot 23^{4} + 8\cdot 23^{5} + 9\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 18 + 14\cdot 23 + 16\cdot 23^{2} + 10\cdot 23^{3} + 21\cdot 23^{4} + 5\cdot 23^{5} + 21\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 19 + 20\cdot 23 + 17\cdot 23^{2} + 21\cdot 23^{3} + 15\cdot 23^{4} + 4\cdot 23^{5} + 4\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 21 + 3\cdot 23 + 15\cdot 23^{2} + 14\cdot 23^{3} + 3\cdot 23^{4} + 18\cdot 23^{6} +O\left(23^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,4,7,3,8,5,2,6)$ |
| $(1,7,8,2)(3,5,6,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-1$ |
| $1$ | $4$ | $(1,7,8,2)(3,5,6,4)$ | $-\zeta_{8}^{2}$ |
| $1$ | $4$ | $(1,2,8,7)(3,4,6,5)$ | $\zeta_{8}^{2}$ |
| $1$ | $8$ | $(1,4,7,3,8,5,2,6)$ | $\zeta_{8}^{3}$ |
| $1$ | $8$ | $(1,3,2,4,8,6,7,5)$ | $\zeta_{8}$ |
| $1$ | $8$ | $(1,5,7,6,8,4,2,3)$ | $-\zeta_{8}^{3}$ |
| $1$ | $8$ | $(1,6,2,5,8,3,7,4)$ | $-\zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.