Properties

Label 1.2e5_3_5.8t1.1c3
Dimension 1
Group $C_8$
Conductor $ 2^{5} \cdot 3 \cdot 5 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$480= 2^{5} \cdot 3 \cdot 5 $
Artin number field: Splitting field of $f= x^{8} - 120 x^{6} + 4500 x^{4} - 54000 x^{2} + 4050 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Even
Corresponding Dirichlet character: \(\chi_{480}(413,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 5 + 21\cdot 23 + 19\cdot 23^{2} + 8\cdot 23^{5} + 20\cdot 23^{6} + 9\cdot 23^{7} + 15\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 9 + 23 + 18\cdot 23^{2} + 5\cdot 23^{3} + 14\cdot 23^{4} + 11\cdot 23^{5} + 15\cdot 23^{6} + 4\cdot 23^{7} + 22\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 10 + 5\cdot 23 + 7\cdot 23^{2} + 2\cdot 23^{3} + 4\cdot 23^{4} + 13\cdot 23^{5} + 15\cdot 23^{6} + 22\cdot 23^{7} + 17\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 11 + 15\cdot 23 + 18\cdot 23^{2} + 18\cdot 23^{3} + 2\cdot 23^{4} + 3\cdot 23^{5} + 14\cdot 23^{6} + 20\cdot 23^{7} + 20\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 12 + 7\cdot 23 + 4\cdot 23^{2} + 4\cdot 23^{3} + 20\cdot 23^{4} + 19\cdot 23^{5} + 8\cdot 23^{6} + 2\cdot 23^{7} + 2\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 13 + 17\cdot 23 + 15\cdot 23^{2} + 20\cdot 23^{3} + 18\cdot 23^{4} + 9\cdot 23^{5} + 7\cdot 23^{6} + 5\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 14 + 21\cdot 23 + 4\cdot 23^{2} + 17\cdot 23^{3} + 8\cdot 23^{4} + 11\cdot 23^{5} + 7\cdot 23^{6} + 18\cdot 23^{7} +O\left(23^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 18 + 23 + 3\cdot 23^{2} + 22\cdot 23^{3} + 22\cdot 23^{4} + 14\cdot 23^{5} + 2\cdot 23^{6} + 13\cdot 23^{7} + 7\cdot 23^{8} +O\left(23^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,2,4,8,6,7,5)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-1$
$1$$4$$(1,2,8,7)(3,4,6,5)$$\zeta_{8}^{2}$
$1$$4$$(1,7,8,2)(3,5,6,4)$$-\zeta_{8}^{2}$
$1$$8$$(1,3,2,4,8,6,7,5)$$-\zeta_{8}$
$1$$8$$(1,4,7,3,8,5,2,6)$$-\zeta_{8}^{3}$
$1$$8$$(1,6,2,5,8,3,7,4)$$\zeta_{8}$
$1$$8$$(1,5,7,6,8,4,2,3)$$\zeta_{8}^{3}$
The blue line marks the conjugacy class containing complex conjugation.