Properties

Label 1.2e5_3.8t1.2c2
Dimension 1
Group $C_8$
Conductor $ 2^{5} \cdot 3 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$96= 2^{5} \cdot 3 $
Artin number field: Splitting field of $f= x^{8} + 24 x^{6} + 180 x^{4} + 432 x^{2} + 162 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{96}(29,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 11\cdot 31 + 13\cdot 31^{2} + 9\cdot 31^{3} + 23\cdot 31^{4} + 21\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 6 + 6\cdot 31 + 13\cdot 31^{2} + 21\cdot 31^{3} + 30\cdot 31^{4} + 25\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 13 + 22\cdot 31 + 3\cdot 31^{2} + 20\cdot 31^{3} + 22\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 14 + 14\cdot 31 + 23\cdot 31^{2} + 19\cdot 31^{3} + 22\cdot 31^{4} + 24\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 17 + 16\cdot 31 + 7\cdot 31^{2} + 11\cdot 31^{3} + 8\cdot 31^{4} + 6\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 18 + 8\cdot 31 + 27\cdot 31^{2} + 10\cdot 31^{3} + 30\cdot 31^{4} + 8\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 25 + 24\cdot 31 + 17\cdot 31^{2} + 9\cdot 31^{3} + 5\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 28 + 19\cdot 31 + 17\cdot 31^{2} + 21\cdot 31^{3} + 7\cdot 31^{4} + 9\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,3,7,6)$
$(1,7,5,3,8,2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-1$
$1$$4$$(1,5,8,4)(2,6,7,3)$$-\zeta_{8}^{2}$
$1$$4$$(1,4,8,5)(2,3,7,6)$$\zeta_{8}^{2}$
$1$$8$$(1,7,5,3,8,2,4,6)$$\zeta_{8}^{3}$
$1$$8$$(1,3,4,7,8,6,5,2)$$\zeta_{8}$
$1$$8$$(1,2,5,6,8,7,4,3)$$-\zeta_{8}^{3}$
$1$$8$$(1,6,4,2,8,3,5,7)$$-\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.