Properties

Label 1.2e5_3.8t1.1c3
Dimension 1
Group $C_8$
Conductor $ 2^{5} \cdot 3 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$96= 2^{5} \cdot 3 $
Artin number field: Splitting field of $f= x^{8} - 24 x^{6} + 180 x^{4} - 432 x^{2} + 162 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Even
Corresponding Dirichlet character: \(\chi_{96}(59,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 9\cdot 79 + 15\cdot 79^{2} + 58\cdot 79^{3} + 66\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 19 + 43\cdot 79 + 15\cdot 79^{2} + 69\cdot 79^{3} + 8\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 + 6\cdot 79 + 67\cdot 79^{2} + 46\cdot 79^{3} + 57\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 59\cdot 79 + 36\cdot 79^{2} + 39\cdot 79^{3} + 45\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 57 + 19\cdot 79 + 42\cdot 79^{2} + 39\cdot 79^{3} + 33\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 58 + 72\cdot 79 + 11\cdot 79^{2} + 32\cdot 79^{3} + 21\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 60 + 35\cdot 79 + 63\cdot 79^{2} + 9\cdot 79^{3} + 70\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 70 + 69\cdot 79 + 63\cdot 79^{2} + 20\cdot 79^{3} + 12\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,7,4,3,8,2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-1$
$1$$4$$(1,4,8,5)(2,6,7,3)$$\zeta_{8}^{2}$
$1$$4$$(1,5,8,4)(2,3,7,6)$$-\zeta_{8}^{2}$
$1$$8$$(1,7,4,3,8,2,5,6)$$-\zeta_{8}$
$1$$8$$(1,3,5,7,8,6,4,2)$$-\zeta_{8}^{3}$
$1$$8$$(1,2,4,6,8,7,5,3)$$\zeta_{8}$
$1$$8$$(1,6,5,2,8,3,4,7)$$\zeta_{8}^{3}$
The blue line marks the conjugacy class containing complex conjugation.