Properties

Label 1.2e5_13.8t1.1c4
Dimension 1
Group $C_8$
Conductor $ 2^{5} \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$416= 2^{5} \cdot 13 $
Artin number field: Splitting field of $f= x^{8} + 104 x^{6} + 3380 x^{4} + 35152 x^{2} + 57122 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{416}(363,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 1 + 19\cdot 31 + 23\cdot 31^{2} + 20\cdot 31^{3} + 18\cdot 31^{4} + 26\cdot 31^{5} + 28\cdot 31^{6} + 9\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 3 + 14\cdot 31 + 28\cdot 31^{2} + 28\cdot 31^{3} + 14\cdot 31^{4} + 31^{5} + 7\cdot 31^{6} + 19\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 8 + 7\cdot 31 + 31^{2} + 13\cdot 31^{3} + 13\cdot 31^{4} + 10\cdot 31^{5} + 23\cdot 31^{6} + 24\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 15 + 30\cdot 31 + 6\cdot 31^{2} + 13\cdot 31^{4} + 28\cdot 31^{5} + 27\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 16 + 24\cdot 31^{2} + 30\cdot 31^{3} + 17\cdot 31^{4} + 2\cdot 31^{5} + 30\cdot 31^{6} + 3\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 23 + 23\cdot 31 + 29\cdot 31^{2} + 17\cdot 31^{3} + 17\cdot 31^{4} + 20\cdot 31^{5} + 7\cdot 31^{6} + 6\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 28 + 16\cdot 31 + 2\cdot 31^{2} + 2\cdot 31^{3} + 16\cdot 31^{4} + 29\cdot 31^{5} + 23\cdot 31^{6} + 11\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 30 + 11\cdot 31 + 7\cdot 31^{2} + 10\cdot 31^{3} + 12\cdot 31^{4} + 4\cdot 31^{5} + 2\cdot 31^{6} + 21\cdot 31^{7} +O\left(31^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(1,5,7,6,8,4,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-1$
$1$$4$$(1,7,8,2)(3,5,6,4)$$-\zeta_{8}^{2}$
$1$$4$$(1,2,8,7)(3,4,6,5)$$\zeta_{8}^{2}$
$1$$8$$(1,5,7,6,8,4,2,3)$$-\zeta_{8}^{3}$
$1$$8$$(1,6,2,5,8,3,7,4)$$-\zeta_{8}$
$1$$8$$(1,4,7,3,8,5,2,6)$$\zeta_{8}^{3}$
$1$$8$$(1,3,2,4,8,6,7,5)$$\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.