Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 1 + 40\cdot 47 + 5\cdot 47^{2} + 20\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 + 5\cdot 47 + 41\cdot 47^{2} + 19\cdot 47^{3} + 16\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 11 + 13\cdot 47 + 8\cdot 47^{2} + 22\cdot 47^{3} + 20\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 18 + 25\cdot 47 + 45\cdot 47^{3} + 35\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 29 + 21\cdot 47 + 46\cdot 47^{2} + 47^{3} + 11\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 36 + 33\cdot 47 + 38\cdot 47^{2} + 24\cdot 47^{3} + 26\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 43 + 41\cdot 47 + 5\cdot 47^{2} + 27\cdot 47^{3} + 30\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 46 + 6\cdot 47 + 41\cdot 47^{2} + 46\cdot 47^{3} + 26\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,5,8,4)(2,6,7,3)$ |
| $(1,7,5,3,8,2,4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-1$ |
| $1$ | $4$ | $(1,5,8,4)(2,6,7,3)$ | $\zeta_{8}^{2}$ |
| $1$ | $4$ | $(1,4,8,5)(2,3,7,6)$ | $-\zeta_{8}^{2}$ |
| $1$ | $8$ | $(1,7,5,3,8,2,4,6)$ | $\zeta_{8}$ |
| $1$ | $8$ | $(1,3,4,7,8,6,5,2)$ | $\zeta_{8}^{3}$ |
| $1$ | $8$ | $(1,2,5,6,8,7,4,3)$ | $-\zeta_{8}$ |
| $1$ | $8$ | $(1,6,4,2,8,3,5,7)$ | $-\zeta_{8}^{3}$ |
The blue line marks the conjugacy class containing complex conjugation.