Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 + 3\cdot 31 + 3\cdot 31^{2} + 11\cdot 31^{3} + 22\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 9 + 14\cdot 31 + 4\cdot 31^{2} + 8\cdot 31^{3} + 22\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 10 + 18\cdot 31 + 29\cdot 31^{3} + 19\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 11 + 27\cdot 31 + 24\cdot 31^{2} + 11\cdot 31^{3} + 17\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 20 + 3\cdot 31 + 6\cdot 31^{2} + 19\cdot 31^{3} + 13\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 21 + 12\cdot 31 + 30\cdot 31^{2} + 31^{3} + 11\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 22 + 16\cdot 31 + 26\cdot 31^{2} + 22\cdot 31^{3} + 8\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 27 + 27\cdot 31 + 27\cdot 31^{2} + 19\cdot 31^{3} + 8\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,7,8,2)(3,5,6,4)$ |
| $(1,3,7,5,8,6,2,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-1$ |
| $1$ | $4$ | $(1,7,8,2)(3,5,6,4)$ | $\zeta_{8}^{2}$ |
| $1$ | $4$ | $(1,2,8,7)(3,4,6,5)$ | $-\zeta_{8}^{2}$ |
| $1$ | $8$ | $(1,3,7,5,8,6,2,4)$ | $\zeta_{8}$ |
| $1$ | $8$ | $(1,5,2,3,8,4,7,6)$ | $\zeta_{8}^{3}$ |
| $1$ | $8$ | $(1,6,7,4,8,3,2,5)$ | $-\zeta_{8}$ |
| $1$ | $8$ | $(1,4,2,6,8,5,7,3)$ | $-\zeta_{8}^{3}$ |
The blue line marks the conjugacy class containing complex conjugation.