Properties

Label 1.2e4_13.12t1.1c2
Dimension 1
Group $C_{12}$
Conductor $ 2^{4} \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_{12}$
Conductor:$208= 2^{4} \cdot 13 $
Artin number field: Splitting field of $f= x^{12} - 4 x^{11} + 2 x^{10} + 71 x^{8} - 60 x^{7} - 166 x^{6} - 468 x^{5} + 234 x^{4} + 2196 x^{3} + 5160 x^{2} + 3408 x + 2417 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_{12}$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{208}(35,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{4} + 9 x^{2} + 38 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 42 a^{3} + 24 a^{2} + 4 a + 13 + \left(7 a^{3} + 27 a^{2} + 9 a + 30\right)\cdot 53 + \left(43 a^{3} + 37 a^{2} + 16 a + 39\right)\cdot 53^{2} + \left(30 a^{3} + 33 a^{2} + 38 a + 35\right)\cdot 53^{3} + \left(13 a^{3} + 22 a^{2} + 10 a + 16\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 42 a^{3} + 24 a^{2} + 4 a + 40 + \left(7 a^{3} + 27 a^{2} + 9 a + 36\right)\cdot 53 + \left(43 a^{3} + 37 a^{2} + 16 a + 50\right)\cdot 53^{2} + \left(30 a^{3} + 33 a^{2} + 38 a + 11\right)\cdot 53^{3} + \left(13 a^{3} + 22 a^{2} + 10 a + 33\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 42 a^{3} + 24 a^{2} + 4 a + 47 + \left(7 a^{3} + 27 a^{2} + 9 a + 15\right)\cdot 53 + \left(43 a^{3} + 37 a^{2} + 16 a + 24\right)\cdot 53^{2} + \left(30 a^{3} + 33 a^{2} + 38 a + 47\right)\cdot 53^{3} + \left(13 a^{3} + 22 a^{2} + 10 a + 38\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a^{3} + 29 a^{2} + 28 a + 28 + \left(32 a^{3} + 40 a^{2} + 22 a + 37\right)\cdot 53 + \left(44 a^{3} + 11 a^{2} + 7 a + 29\right)\cdot 53^{2} + \left(44 a^{3} + 4 a^{2} + 6 a + 40\right)\cdot 53^{3} + \left(41 a^{3} + 22 a^{2} + 33 a + 14\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 38 a^{3} + 29 a^{2} + 28 a + 1 + \left(32 a^{3} + 40 a^{2} + 22 a + 31\right)\cdot 53 + \left(44 a^{3} + 11 a^{2} + 7 a + 18\right)\cdot 53^{2} + \left(44 a^{3} + 4 a^{2} + 6 a + 11\right)\cdot 53^{3} + \left(41 a^{3} + 22 a^{2} + 33 a + 51\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 38 a^{3} + 29 a^{2} + 28 a + 35 + \left(32 a^{3} + 40 a^{2} + 22 a + 16\right)\cdot 53 + \left(44 a^{3} + 11 a^{2} + 7 a + 3\right)\cdot 53^{2} + \left(44 a^{3} + 4 a^{2} + 6 a + 23\right)\cdot 53^{3} + \left(41 a^{3} + 22 a^{2} + 33 a + 20\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 11 a^{3} + 29 a^{2} + 49 a + 27 + \left(45 a^{3} + 25 a^{2} + 43 a + 34\right)\cdot 53 + \left(9 a^{3} + 15 a^{2} + 36 a + 9\right)\cdot 53^{2} + \left(22 a^{3} + 19 a^{2} + 14 a + 19\right)\cdot 53^{3} + \left(39 a^{3} + 30 a^{2} + 42 a + 9\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 11 a^{3} + 29 a^{2} + 49 a + \left(45 a^{3} + 25 a^{2} + 43 a + 28\right)\cdot 53 + \left(9 a^{3} + 15 a^{2} + 36 a + 51\right)\cdot 53^{2} + \left(22 a^{3} + 19 a^{2} + 14 a + 42\right)\cdot 53^{3} + \left(39 a^{3} + 30 a^{2} + 42 a + 45\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 11 a^{3} + 29 a^{2} + 49 a + 34 + \left(45 a^{3} + 25 a^{2} + 43 a + 13\right)\cdot 53 + \left(9 a^{3} + 15 a^{2} + 36 a + 36\right)\cdot 53^{2} + \left(22 a^{3} + 19 a^{2} + 14 a + 1\right)\cdot 53^{3} + \left(39 a^{3} + 30 a^{2} + 42 a + 15\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 10 }$ $=$ $ 15 a^{3} + 24 a^{2} + 25 a + 46 + \left(20 a^{3} + 12 a^{2} + 30 a + 12\right)\cdot 53 + \left(8 a^{3} + 41 a^{2} + 45 a + 4\right)\cdot 53^{2} + \left(8 a^{3} + 48 a^{2} + 46 a + 26\right)\cdot 53^{3} + \left(11 a^{3} + 30 a^{2} + 19 a + 33\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 11 }$ $=$ $ 15 a^{3} + 24 a^{2} + 25 a + 12 + \left(20 a^{3} + 12 a^{2} + 30 a + 27\right)\cdot 53 + \left(8 a^{3} + 41 a^{2} + 45 a + 19\right)\cdot 53^{2} + \left(8 a^{3} + 48 a^{2} + 46 a + 14\right)\cdot 53^{3} + \left(11 a^{3} + 30 a^{2} + 19 a + 11\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 12 }$ $=$ $ 15 a^{3} + 24 a^{2} + 25 a + 39 + \left(20 a^{3} + 12 a^{2} + 30 a + 33\right)\cdot 53 + \left(8 a^{3} + 41 a^{2} + 45 a + 30\right)\cdot 53^{2} + \left(8 a^{3} + 48 a^{2} + 46 a + 43\right)\cdot 53^{3} + \left(11 a^{3} + 30 a^{2} + 19 a + 27\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(1,12,9,5,2,10,8,4,3,11,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,8)(2,7)(3,9)(4,12)(5,11)(6,10)$$-1$
$1$$3$$(1,2,3)(4,6,5)(7,9,8)(10,11,12)$$\zeta_{12}^{2} - 1$
$1$$3$$(1,3,2)(4,5,6)(7,8,9)(10,12,11)$$-\zeta_{12}^{2}$
$1$$4$$(1,5,8,11)(2,4,7,12)(3,6,9,10)$$-\zeta_{12}^{3}$
$1$$4$$(1,11,8,5)(2,12,7,4)(3,10,9,6)$$\zeta_{12}^{3}$
$1$$6$$(1,9,2,8,3,7)(4,11,6,12,5,10)$$\zeta_{12}^{2}$
$1$$6$$(1,7,3,8,2,9)(4,10,5,12,6,11)$$-\zeta_{12}^{2} + 1$
$1$$12$$(1,12,9,5,2,10,8,4,3,11,7,6)$$-\zeta_{12}$
$1$$12$$(1,10,7,5,3,12,8,6,2,11,9,4)$$-\zeta_{12}^{3} + \zeta_{12}$
$1$$12$$(1,4,9,11,2,6,8,12,3,5,7,10)$$\zeta_{12}$
$1$$12$$(1,6,7,11,3,4,8,10,2,5,9,12)$$\zeta_{12}^{3} - \zeta_{12}$
The blue line marks the conjugacy class containing complex conjugation.