Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 30 a + 9 + \left(42 a + 31\right)\cdot 43 + \left(24 a + 1\right)\cdot 43^{2} + \left(12 a + 24\right)\cdot 43^{3} + \left(32 a + 33\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 30 a + 20 + \left(42 a + 25\right)\cdot 43 + \left(24 a + 10\right)\cdot 43^{2} + \left(12 a + 26\right)\cdot 43^{3} + \left(32 a + 16\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 13 a + 7 + 38\cdot 43 + \left(18 a + 35\right)\cdot 43^{2} + \left(30 a + 13\right)\cdot 43^{3} + \left(10 a + 36\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 13 a + 23\cdot 43 + \left(18 a + 39\right)\cdot 43^{2} + \left(30 a + 41\right)\cdot 43^{3} + \left(10 a + 25\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 30 a + 13 + \left(42 a + 10\right)\cdot 43 + \left(24 a + 14\right)\cdot 43^{2} + \left(12 a + 11\right)\cdot 43^{3} + \left(32 a + 6\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 13 a + 39 + \left(18 a + 27\right)\cdot 43^{2} + \left(30 a + 11\right)\cdot 43^{3} + \left(10 a + 10\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,6)(2,3)(4,5)$ |
| $(1,2,5)(3,4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$1$ |
$1$ |
| $1$ |
$2$ |
$(1,6)(2,3)(4,5)$ |
$-1$ |
$-1$ |
| $1$ |
$3$ |
$(1,2,5)(3,4,6)$ |
$\zeta_{3}$ |
$-\zeta_{3} - 1$ |
| $1$ |
$3$ |
$(1,5,2)(3,6,4)$ |
$-\zeta_{3} - 1$ |
$\zeta_{3}$ |
| $1$ |
$6$ |
$(1,3,5,6,2,4)$ |
$-\zeta_{3}$ |
$\zeta_{3} + 1$ |
| $1$ |
$6$ |
$(1,4,2,6,5,3)$ |
$\zeta_{3} + 1$ |
$-\zeta_{3}$ |
The blue line marks the conjugacy class containing complex conjugation.