Properties

Label 1.2e3_7_17.6t1.1
Dimension 1
Group $C_6$
Conductor $ 2^{3} \cdot 7 \cdot 17 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$952= 2^{3} \cdot 7 \cdot 17 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 99 x^{4} - 130 x^{3} + 3538 x^{2} - 2384 x + 45289 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 10 + \left(5 a + 6\right)\cdot 13 + \left(a + 12\right)\cdot 13^{2} + 12\cdot 13^{3} + \left(5 a + 5\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 9 + \left(5 a + 3\right)\cdot 13 + \left(a + 12\right)\cdot 13^{2} + 8\cdot 13^{3} + \left(5 a + 3\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 a + 12 + \left(7 a + 8\right)\cdot 13 + \left(11 a + 9\right)\cdot 13^{2} + \left(12 a + 4\right)\cdot 13^{3} + \left(7 a + 7\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 2 + \left(7 a + 7\right)\cdot 13 + \left(11 a + 8\right)\cdot 13^{2} + \left(12 a + 11\right)\cdot 13^{3} + \left(7 a + 10\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 1 + \left(7 a + 4\right)\cdot 13 + \left(11 a + 8\right)\cdot 13^{2} + \left(12 a + 7\right)\cdot 13^{3} + \left(7 a + 8\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 7 + \left(5 a + 8\right)\cdot 13 + a\cdot 13^{2} + 6\cdot 13^{3} + \left(5 a + 2\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,6,4,2,3)$
$(1,4)(2,5)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-1$ $-1$
$1$ $3$ $(1,6,2)(3,5,4)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,2,6)(3,4,5)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,5,6,4,2,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,3,2,4,6,5)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.