Properties

Label 1.2e3_7_11.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 2^{3} \cdot 7 \cdot 11 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$616= 2^{3} \cdot 7 \cdot 11 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 69 x^{4} + 94 x^{3} + 1410 x^{2} - 928 x - 8359 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even
Corresponding Dirichlet character: \(\chi_{616}(219,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 37 a + 17 + \left(19 a + 25\right)\cdot 41 + \left(25 a + 3\right)\cdot 41^{2} + \left(11 a + 13\right)\cdot 41^{3} + \left(11 a + 8\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 21 + \left(21 a + 1\right)\cdot 41 + \left(15 a + 11\right)\cdot 41^{2} + \left(29 a + 39\right)\cdot 41^{3} + \left(29 a + 1\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 5 + \left(21 a + 7\right)\cdot 41 + \left(15 a + 19\right)\cdot 41^{2} + \left(29 a + 22\right)\cdot 41^{3} + \left(29 a + 30\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 37 a + 33 + \left(19 a + 19\right)\cdot 41 + \left(25 a + 36\right)\cdot 41^{2} + \left(11 a + 29\right)\cdot 41^{3} + \left(11 a + 20\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 39 + \left(21 a + 4\right)\cdot 41 + \left(15 a + 34\right)\cdot 41^{2} + \left(29 a + 13\right)\cdot 41^{3} + \left(29 a + 21\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 37 a + 10 + \left(19 a + 23\right)\cdot 41 + \left(25 a + 18\right)\cdot 41^{2} + \left(11 a + 4\right)\cdot 41^{3} + \left(11 a + 40\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2,6,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)(5,6)$$-1$
$1$$3$$(1,6,4)(2,3,5)$$-\zeta_{3} - 1$
$1$$3$$(1,4,6)(2,5,3)$$\zeta_{3}$
$1$$6$$(1,2,6,3,4,5)$$-\zeta_{3}$
$1$$6$$(1,5,4,3,6,2)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.