Properties

Label 1.2e3_7.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 2^{3} \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$56= 2^{3} \cdot 7 $
Artin number field: Splitting field of $f= x^{6} - 14 x^{4} + 56 x^{2} - 56 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even
Corresponding Dirichlet character: \(\chi_{56}(3,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 25 + \left(18 a + 20\right)\cdot 29 + \left(12 a + 6\right)\cdot 29^{2} + \left(14 a + 28\right)\cdot 29^{3} + \left(21 a + 25\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 26 + \left(5 a + 4\right)\cdot 29 + \left(a + 14\right)\cdot 29^{2} + \left(9 a + 21\right)\cdot 29^{3} + \left(2 a + 27\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 17 + \left(2 a + 6\right)\cdot 29 + \left(24 a + 28\right)\cdot 29^{2} + \left(22 a + 12\right)\cdot 29^{3} + \left(4 a + 28\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 4 + \left(10 a + 8\right)\cdot 29 + \left(16 a + 22\right)\cdot 29^{2} + 14 a\cdot 29^{3} + \left(7 a + 3\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 3 + \left(23 a + 24\right)\cdot 29 + \left(27 a + 14\right)\cdot 29^{2} + \left(19 a + 7\right)\cdot 29^{3} + \left(26 a + 1\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a + 12 + \left(26 a + 22\right)\cdot 29 + 4 a\cdot 29^{2} + \left(6 a + 16\right)\cdot 29^{3} + 24 a\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,6,5,4,3,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,5)(3,6)$$-1$
$1$$3$$(1,5,3)(2,6,4)$$-\zeta_{3} - 1$
$1$$3$$(1,3,5)(2,4,6)$$\zeta_{3}$
$1$$6$$(1,6,5,4,3,2)$$-\zeta_{3}$
$1$$6$$(1,2,3,4,5,6)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.