Properties

Label 1.2e3_5_17.4t1.6
Dimension 1
Group $C_4$
Conductor $ 2^{3} \cdot 5 \cdot 17 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$680= 2^{3} \cdot 5 \cdot 17 $
Artin number field: Splitting field of $f= x^{4} + 170 x^{2} + 5780 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 11 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 1 + 3\cdot 11 + 7\cdot 11^{3} + 2\cdot 11^{4} + 3\cdot 11^{5} + 4\cdot 11^{6} + 8\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 4 + 4\cdot 11 + 10\cdot 11^{2} + 9\cdot 11^{3} + 11^{4} + 10\cdot 11^{5} + 3\cdot 11^{6} + 10\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 7 + 6\cdot 11 + 11^{3} + 9\cdot 11^{4} + 7\cdot 11^{6} +O\left(11^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 10 + 7\cdot 11 + 10\cdot 11^{2} + 3\cdot 11^{3} + 8\cdot 11^{4} + 7\cdot 11^{5} + 6\cdot 11^{6} + 2\cdot 11^{7} +O\left(11^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3,4,2)$
$(1,4)(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,4)(2,3)$ $-1$ $-1$
$1$ $4$ $(1,3,4,2)$ $\zeta_{4}$ $-\zeta_{4}$
$1$ $4$ $(1,2,4,3)$ $-\zeta_{4}$ $\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.