Properties

Label 1.2e3_43.6t1.3c1
Dimension 1
Group $C_6$
Conductor $ 2^{3} \cdot 43 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$344= 2^{3} \cdot 43 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 21 x^{4} + 4 x^{3} + 228 x^{2} + 368 x + 548 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{344}(251,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 11 + \left(39 a + 3\right)\cdot 47 + \left(16 a + 3\right)\cdot 47^{2} + \left(16 a + 46\right)\cdot 47^{3} + \left(13 a + 43\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 27 + \left(7 a + 42\right)\cdot 47 + \left(30 a + 32\right)\cdot 47^{2} + \left(30 a + 9\right)\cdot 47^{3} + \left(33 a + 28\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 37 + \left(39 a + 18\right)\cdot 47 + \left(16 a + 37\right)\cdot 47^{2} + \left(16 a + 6\right)\cdot 47^{3} + \left(13 a + 40\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 34 + \left(39 a + 30\right)\cdot 47 + \left(16 a + 38\right)\cdot 47^{2} + \left(16 a + 40\right)\cdot 47^{3} + \left(13 a + 17\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 27 a + 30 + \left(7 a + 30\right)\cdot 47 + \left(30 a + 31\right)\cdot 47^{2} + \left(30 a + 22\right)\cdot 47^{3} + \left(33 a + 3\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 4 + \left(7 a + 15\right)\cdot 47 + \left(30 a + 44\right)\cdot 47^{2} + \left(30 a + 14\right)\cdot 47^{3} + \left(33 a + 7\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3,6,4,5)$
$(1,6)(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,6)(2,4)(3,5)$$-1$
$1$$3$$(1,3,4)(2,6,5)$$\zeta_{3}$
$1$$3$$(1,4,3)(2,5,6)$$-\zeta_{3} - 1$
$1$$6$$(1,2,3,6,4,5)$$\zeta_{3} + 1$
$1$$6$$(1,5,4,6,3,2)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.