Properties

Label 1.2e3_3e2_7.6t1.12c2
Dimension 1
Group $C_6$
Conductor $ 2^{3} \cdot 3^{2} \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$504= 2^{3} \cdot 3^{2} \cdot 7 $
Artin number field: Splitting field of $f= x^{6} + 36 x^{4} - 2 x^{3} + 597 x^{2} + 90 x + 4047 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{504}(349,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 17 a + 31 + \left(5 a + 14\right)\cdot 37 + \left(29 a + 24\right)\cdot 37^{2} + \left(29 a + 29\right)\cdot 37^{3} + \left(12 a + 29\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 29 + 31 a\cdot 37 + \left(7 a + 14\right)\cdot 37^{2} + \left(7 a + 13\right)\cdot 37^{3} + \left(24 a + 2\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 25 + \left(31 a + 19\right)\cdot 37 + \left(7 a + 24\right)\cdot 37^{2} + \left(7 a + 8\right)\cdot 37^{3} + \left(24 a + 14\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 17 + 5 a\cdot 37 + \left(29 a + 17\right)\cdot 37^{2} + \left(29 a + 4\right)\cdot 37^{3} + \left(12 a + 31\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 35 + \left(5 a + 32\right)\cdot 37 + \left(29 a + 13\right)\cdot 37^{2} + \left(29 a + 34\right)\cdot 37^{3} + \left(12 a + 17\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 11 + \left(31 a + 5\right)\cdot 37 + \left(7 a + 17\right)\cdot 37^{2} + \left(7 a + 20\right)\cdot 37^{3} + \left(24 a + 15\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,5,3,4,2)$
$(1,3)(2,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,5)(4,6)$$-1$
$1$$3$$(1,5,4)(2,6,3)$$-\zeta_{3} - 1$
$1$$3$$(1,4,5)(2,3,6)$$\zeta_{3}$
$1$$6$$(1,6,5,3,4,2)$$-\zeta_{3}$
$1$$6$$(1,2,4,3,5,6)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.