Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 17 a + 31 + \left(5 a + 14\right)\cdot 37 + \left(29 a + 24\right)\cdot 37^{2} + \left(29 a + 29\right)\cdot 37^{3} + \left(12 a + 29\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 20 a + 29 + 31 a\cdot 37 + \left(7 a + 14\right)\cdot 37^{2} + \left(7 a + 13\right)\cdot 37^{3} + \left(24 a + 2\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 20 a + 25 + \left(31 a + 19\right)\cdot 37 + \left(7 a + 24\right)\cdot 37^{2} + \left(7 a + 8\right)\cdot 37^{3} + \left(24 a + 14\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 17 a + 17 + 5 a\cdot 37 + \left(29 a + 17\right)\cdot 37^{2} + \left(29 a + 4\right)\cdot 37^{3} + \left(12 a + 31\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 17 a + 35 + \left(5 a + 32\right)\cdot 37 + \left(29 a + 13\right)\cdot 37^{2} + \left(29 a + 34\right)\cdot 37^{3} + \left(12 a + 17\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 20 a + 11 + \left(31 a + 5\right)\cdot 37 + \left(7 a + 17\right)\cdot 37^{2} + \left(7 a + 20\right)\cdot 37^{3} + \left(24 a + 15\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,6,5,3,4,2)$ |
| $(1,3)(2,5)(4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,3)(2,5)(4,6)$ | $-1$ |
| $1$ | $3$ | $(1,5,4)(2,6,3)$ | $\zeta_{3}$ |
| $1$ | $3$ | $(1,4,5)(2,3,6)$ | $-\zeta_{3} - 1$ |
| $1$ | $6$ | $(1,6,5,3,4,2)$ | $\zeta_{3} + 1$ |
| $1$ | $6$ | $(1,2,4,3,5,6)$ | $-\zeta_{3}$ |
The blue line marks the conjugacy class containing complex conjugation.