Properties

Label 1.2e3_3e2_5_11.6t1.1
Dimension 1
Group $C_6$
Conductor $ 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$3960= 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 $
Artin number field: Splitting field of $f= x^{6} + 324 x^{4} - 2 x^{3} + 36309 x^{2} + 666 x + 1404591 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 42 a + 30 + \left(45 a + 8\right)\cdot 107 + \left(76 a + 28\right)\cdot 107^{2} + \left(52 a + 92\right)\cdot 107^{3} + \left(101 a + 29\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 42 a + 63 + \left(45 a + 88\right)\cdot 107 + \left(76 a + 92\right)\cdot 107^{2} + \left(52 a + 96\right)\cdot 107^{3} + \left(101 a + 2\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 42 a + 83 + \left(45 a + 14\right)\cdot 107 + \left(76 a + 77\right)\cdot 107^{2} + \left(52 a + 90\right)\cdot 107^{3} + \left(101 a + 25\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 65 a + 37 + \left(61 a + 47\right)\cdot 107 + \left(30 a + 16\right)\cdot 107^{2} + \left(54 a + 11\right)\cdot 107^{3} + \left(5 a + 58\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 65 a + 17 + \left(61 a + 14\right)\cdot 107 + \left(30 a + 32\right)\cdot 107^{2} + \left(54 a + 17\right)\cdot 107^{3} + \left(5 a + 35\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 65 a + 91 + \left(61 a + 40\right)\cdot 107 + \left(30 a + 74\right)\cdot 107^{2} + \left(54 a + 12\right)\cdot 107^{3} + \left(5 a + 62\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,5)(3,4)$
$(1,5,3,6,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,6)(2,5)(3,4)$ $-1$ $-1$
$1$ $3$ $(1,3,2)(4,5,6)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,2,3)(4,6,5)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,5,3,6,2,4)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,4,2,6,3,5)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.