Properties

Label 1.2e3_3e2_37.6t1.2
Dimension 1
Group $C_6$
Conductor $ 2^{3} \cdot 3^{2} \cdot 37 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$2664= 2^{3} \cdot 3^{2} \cdot 37 $
Artin number field: Splitting field of $f= x^{6} + 444 x^{4} + 49284 x^{2} + 1215672 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 67 + \left(61 a + 11\right)\cdot 71 + \left(a + 64\right)\cdot 71^{2} + \left(51 a + 20\right)\cdot 71^{3} + \left(52 a + 8\right)\cdot 71^{4} + \left(46 a + 15\right)\cdot 71^{5} + \left(18 a + 40\right)\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 68 + \left(66 a + 41\right)\cdot 71 + \left(56 a + 11\right)\cdot 71^{2} + \left(28 a + 35\right)\cdot 71^{3} + \left(19 a + 30\right)\cdot 71^{4} + \left(36 a + 44\right)\cdot 71^{5} + \left(46 a + 42\right)\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 64 a + 7 + \left(14 a + 17\right)\cdot 71 + \left(12 a + 66\right)\cdot 71^{2} + \left(62 a + 14\right)\cdot 71^{3} + \left(69 a + 32\right)\cdot 71^{4} + \left(58 a + 11\right)\cdot 71^{5} + \left(5 a + 59\right)\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 67 a + 4 + \left(9 a + 59\right)\cdot 71 + \left(69 a + 6\right)\cdot 71^{2} + \left(19 a + 50\right)\cdot 71^{3} + \left(18 a + 62\right)\cdot 71^{4} + \left(24 a + 55\right)\cdot 71^{5} + \left(52 a + 30\right)\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 68 a + 3 + \left(4 a + 29\right)\cdot 71 + \left(14 a + 59\right)\cdot 71^{2} + \left(42 a + 35\right)\cdot 71^{3} + \left(51 a + 40\right)\cdot 71^{4} + \left(34 a + 26\right)\cdot 71^{5} + \left(24 a + 28\right)\cdot 71^{6} +O\left(71^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 64 + \left(56 a + 53\right)\cdot 71 + \left(58 a + 4\right)\cdot 71^{2} + \left(8 a + 56\right)\cdot 71^{3} + \left(a + 38\right)\cdot 71^{4} + \left(12 a + 59\right)\cdot 71^{5} + \left(65 a + 11\right)\cdot 71^{6} +O\left(71^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-1$ $-1$
$1$ $3$ $(1,2,3)(4,5,6)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,3,2)(4,6,5)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,5,3,4,2,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$1$ $6$ $(1,6,2,4,3,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.