Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 + 35\cdot 59 + 25\cdot 59^{2} + 13\cdot 59^{3} + 7\cdot 59^{4} +O\left(59^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 16 + 32\cdot 59 + 35\cdot 59^{2} + 48\cdot 59^{3} + 31\cdot 59^{4} +O\left(59^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 43 + 26\cdot 59 + 23\cdot 59^{2} + 10\cdot 59^{3} + 27\cdot 59^{4} +O\left(59^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 56 + 23\cdot 59 + 33\cdot 59^{2} + 45\cdot 59^{3} + 51\cdot 59^{4} +O\left(59^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,3,4,2)$ |
| $(1,4)(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,4)(2,3)$ | $-1$ |
| $1$ | $4$ | $(1,3,4,2)$ | $-\zeta_{4}$ |
| $1$ | $4$ | $(1,2,4,3)$ | $\zeta_{4}$ |
The blue line marks the conjugacy class containing complex conjugation.