Properties

Label 1.2e3_3_5.4t1.2c1
Dimension 1
Group $C_4$
Conductor $ 2^{3} \cdot 3 \cdot 5 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$120= 2^{3} \cdot 3 \cdot 5 $
Artin number field: Splitting field of $f= x^{4} + 30 x^{2} + 180 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{120}(83,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 35\cdot 59 + 25\cdot 59^{2} + 13\cdot 59^{3} + 7\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 32\cdot 59 + 35\cdot 59^{2} + 48\cdot 59^{3} + 31\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 43 + 26\cdot 59 + 23\cdot 59^{2} + 10\cdot 59^{3} + 27\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 56 + 23\cdot 59 + 33\cdot 59^{2} + 45\cdot 59^{3} + 51\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3,4,2)$
$(1,4)(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)$$-1$
$1$$4$$(1,3,4,2)$$\zeta_{4}$
$1$$4$$(1,2,4,3)$$-\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.