Properties

Label 1.2e3_3.2t1.1
Dimension 1
Group $C_2$
Conductor $ 2^{3} \cdot 3 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_2$
Conductor:$24= 2^{3} \cdot 3 $
Artin number field: Splitting field of $f= x^{2} - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 5 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 3\cdot 5 + 4\cdot 5^{3} + 2\cdot 5^{4} +O\left(5^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 + 5 + 4\cdot 5^{2} + 2\cdot 5^{4} +O\left(5^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 } $

Cycle notation
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 } $ Character values
$c1$
$1$ $1$ $()$ $1$
$1$ $2$ $(1,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.