Properties

Label 1.2e3_19.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 2^{3} \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$152= 2^{3} \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - 38 x^{4} + 152 x^{2} - 152 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Even
Corresponding Dirichlet character: \(\chi_{152}(107,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 105 a + 4 + \left(13 a + 78\right)\cdot 107 + \left(79 a + 62\right)\cdot 107^{2} + \left(11 a + 69\right)\cdot 107^{3} + \left(70 a + 79\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 43 a + 21 + \left(54 a + 73\right)\cdot 107 + \left(101 a + 91\right)\cdot 107^{2} + \left(56 a + 43\right)\cdot 107^{3} + \left(31 a + 72\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 78 a + 58 + \left(45 a + 54\right)\cdot 107 + \left(35 a + 5\right)\cdot 107^{2} + \left(49 a + 26\right)\cdot 107^{3} + \left(85 a + 14\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 103 + \left(93 a + 28\right)\cdot 107 + \left(27 a + 44\right)\cdot 107^{2} + \left(95 a + 37\right)\cdot 107^{3} + \left(36 a + 27\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 64 a + 86 + \left(52 a + 33\right)\cdot 107 + \left(5 a + 15\right)\cdot 107^{2} + \left(50 a + 63\right)\cdot 107^{3} + \left(75 a + 34\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 49 + \left(61 a + 52\right)\cdot 107 + \left(71 a + 101\right)\cdot 107^{2} + \left(57 a + 80\right)\cdot 107^{3} + \left(21 a + 92\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,5)(3,6)$$-1$
$1$$3$$(1,3,5)(2,4,6)$$-\zeta_{3} - 1$
$1$$3$$(1,5,3)(2,6,4)$$\zeta_{3}$
$1$$6$$(1,2,3,4,5,6)$$-\zeta_{3}$
$1$$6$$(1,6,5,4,3,2)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.