Properties

Label 1.2e3_17.8t1.2
Dimension 1
Group $C_8$
Conductor $ 2^{3} \cdot 17 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$136= 2^{3} \cdot 17 $
Artin number field: Splitting field of $f= x^{8} + 34 x^{6} + 272 x^{4} + 680 x^{2} + 272 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 33\cdot 47 + 33\cdot 47^{2} + 46\cdot 47^{3} + 8\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 28\cdot 47 + 29\cdot 47^{2} + 14\cdot 47^{3} + 29\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 + 25\cdot 47 + 15\cdot 47^{2} + 46\cdot 47^{3} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 + 34\cdot 47 + 2\cdot 47^{2} + 13\cdot 47^{3} + 30\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 + 12\cdot 47 + 44\cdot 47^{2} + 33\cdot 47^{3} + 16\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 29 + 21\cdot 47 + 31\cdot 47^{2} + 46\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 40 + 18\cdot 47 + 17\cdot 47^{2} + 32\cdot 47^{3} + 17\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 45 + 13\cdot 47 + 13\cdot 47^{2} + 38\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,4,6,5)$
$(1,3,2,5,8,6,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$ $c3$ $c4$
$1$ $1$ $()$ $1$ $1$ $1$ $1$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-1$ $-1$ $-1$ $-1$
$1$ $4$ $(1,2,8,7)(3,5,6,4)$ $\zeta_{8}^{2}$ $-\zeta_{8}^{2}$ $\zeta_{8}^{2}$ $-\zeta_{8}^{2}$
$1$ $4$ $(1,7,8,2)(3,4,6,5)$ $-\zeta_{8}^{2}$ $\zeta_{8}^{2}$ $-\zeta_{8}^{2}$ $\zeta_{8}^{2}$
$1$ $8$ $(1,3,2,5,8,6,7,4)$ $\zeta_{8}$ $\zeta_{8}^{3}$ $-\zeta_{8}$ $-\zeta_{8}^{3}$
$1$ $8$ $(1,5,7,3,8,4,2,6)$ $\zeta_{8}^{3}$ $\zeta_{8}$ $-\zeta_{8}^{3}$ $-\zeta_{8}$
$1$ $8$ $(1,6,2,4,8,3,7,5)$ $-\zeta_{8}$ $-\zeta_{8}^{3}$ $\zeta_{8}$ $\zeta_{8}^{3}$
$1$ $8$ $(1,4,7,6,8,5,2,3)$ $-\zeta_{8}^{3}$ $-\zeta_{8}$ $\zeta_{8}^{3}$ $\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.