Properties

Label 1.2e3_17.8t1.1c4
Dimension 1
Group $C_8$
Conductor $ 2^{3} \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$136= 2^{3} \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - 34 x^{6} + 272 x^{4} - 680 x^{2} + 272 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Even
Corresponding Dirichlet character: \(\chi_{136}(117,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 51\cdot 103 + 85\cdot 103^{2} + 74\cdot 103^{3} + 59\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 40 + 26\cdot 103 + 42\cdot 103^{2} + 34\cdot 103^{3} + 99\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 43 + 83\cdot 103 + 26\cdot 103^{2} + 63\cdot 103^{3} + 42\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 48 + 29\cdot 103 + 14\cdot 103^{2} + 89\cdot 103^{3} + 59\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 55 + 73\cdot 103 + 88\cdot 103^{2} + 13\cdot 103^{3} + 43\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 60 + 19\cdot 103 + 76\cdot 103^{2} + 39\cdot 103^{3} + 60\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 63 + 76\cdot 103 + 60\cdot 103^{2} + 68\cdot 103^{3} + 3\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 96 + 51\cdot 103 + 17\cdot 103^{2} + 28\cdot 103^{3} + 43\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,5,7,6,8,4,2,3)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-1$
$1$$4$$(1,7,8,2)(3,5,6,4)$$-\zeta_{8}^{2}$
$1$$4$$(1,2,8,7)(3,4,6,5)$$\zeta_{8}^{2}$
$1$$8$$(1,5,7,6,8,4,2,3)$$-\zeta_{8}^{3}$
$1$$8$$(1,6,2,5,8,3,7,4)$$-\zeta_{8}$
$1$$8$$(1,4,7,3,8,5,2,6)$$\zeta_{8}^{3}$
$1$$8$$(1,3,2,4,8,6,7,5)$$\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.