Properties

Label 1.1096.2t1.a.a
Dimension 1
Group $C_2$
Conductor $ 2^{3} \cdot 137 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_2$
Conductor:$1096= 2^{3} \cdot 137 $
Artin number field: Splitting field of \(\Q(\sqrt{274}) \) defined by $f= x^{2} - 274 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2$
Parity: Even
Corresponding Dirichlet character: \(\displaystyle\left(\frac{1096}{\bullet}\right)\)
Projective image: $C_1$
Projective field: \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 3 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 2\cdot 3 + 2\cdot 3^{2} + 3^{3} +O\left(3^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 + 3^{3} + 2\cdot 3^{4} +O\left(3^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 } $

Cycle notation
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 } $ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)$$-1$
The blue line marks the conjugacy class containing complex conjugation.