Properties

Label 1.2e2_7_71.6t1.2c2
Dimension 1
Group $C_6$
Conductor $ 2^{2} \cdot 7 \cdot 71 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$1988= 2^{2} \cdot 7 \cdot 71 $
Artin number field: Splitting field of $f= x^{6} + 497 x^{4} + 70574 x^{2} + 2505377 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{1988}(1419,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 17 + \left(25 a + 13\right)\cdot 43 + \left(7 a + 30\right)\cdot 43^{2} + \left(3 a + 23\right)\cdot 43^{3} + \left(4 a + 42\right)\cdot 43^{4} + \left(40 a + 24\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 35 a + 4 + \left(9 a + 34\right)\cdot 43 + \left(3 a + 24\right)\cdot 43^{2} + \left(13 a + 16\right)\cdot 43^{3} + \left(2 a + 5\right)\cdot 43^{4} + \left(19 a + 13\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 36 + 6\cdot 43 + \left(24 a + 31\right)\cdot 43^{2} + \left(35 a + 15\right)\cdot 43^{3} + \left(40 a + 40\right)\cdot 43^{4} + \left(19 a + 31\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 34 a + 26 + \left(17 a + 29\right)\cdot 43 + \left(35 a + 12\right)\cdot 43^{2} + \left(39 a + 19\right)\cdot 43^{3} + 38 a\cdot 43^{4} + \left(2 a + 18\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 39 + \left(33 a + 8\right)\cdot 43 + \left(39 a + 18\right)\cdot 43^{2} + \left(29 a + 26\right)\cdot 43^{3} + \left(40 a + 37\right)\cdot 43^{4} + \left(23 a + 29\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 7 + \left(42 a + 36\right)\cdot 43 + \left(18 a + 11\right)\cdot 43^{2} + \left(7 a + 27\right)\cdot 43^{3} + \left(2 a + 2\right)\cdot 43^{4} + \left(23 a + 11\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,6,4,2,3)$
$(1,4)(2,5)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,5)(3,6)$$-1$
$1$$3$$(1,6,2)(3,5,4)$$-\zeta_{3} - 1$
$1$$3$$(1,2,6)(3,4,5)$$\zeta_{3}$
$1$$6$$(1,5,6,4,2,3)$$-\zeta_{3}$
$1$$6$$(1,3,2,4,6,5)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.