Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 9 a + 17 + \left(25 a + 13\right)\cdot 43 + \left(7 a + 30\right)\cdot 43^{2} + \left(3 a + 23\right)\cdot 43^{3} + \left(4 a + 42\right)\cdot 43^{4} + \left(40 a + 24\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 35 a + 4 + \left(9 a + 34\right)\cdot 43 + \left(3 a + 24\right)\cdot 43^{2} + \left(13 a + 16\right)\cdot 43^{3} + \left(2 a + 5\right)\cdot 43^{4} + \left(19 a + 13\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 14 a + 36 + 6\cdot 43 + \left(24 a + 31\right)\cdot 43^{2} + \left(35 a + 15\right)\cdot 43^{3} + \left(40 a + 40\right)\cdot 43^{4} + \left(19 a + 31\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 34 a + 26 + \left(17 a + 29\right)\cdot 43 + \left(35 a + 12\right)\cdot 43^{2} + \left(39 a + 19\right)\cdot 43^{3} + 38 a\cdot 43^{4} + \left(2 a + 18\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 8 a + 39 + \left(33 a + 8\right)\cdot 43 + \left(39 a + 18\right)\cdot 43^{2} + \left(29 a + 26\right)\cdot 43^{3} + \left(40 a + 37\right)\cdot 43^{4} + \left(23 a + 29\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 29 a + 7 + \left(42 a + 36\right)\cdot 43 + \left(18 a + 11\right)\cdot 43^{2} + \left(7 a + 27\right)\cdot 43^{3} + \left(2 a + 2\right)\cdot 43^{4} + \left(23 a + 11\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,5,6,4,2,3)$ |
| $(1,4)(2,5)(3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-1$ |
| $1$ | $3$ | $(1,6,2)(3,5,4)$ | $-\zeta_{3} - 1$ |
| $1$ | $3$ | $(1,2,6)(3,4,5)$ | $\zeta_{3}$ |
| $1$ | $6$ | $(1,5,6,4,2,3)$ | $-\zeta_{3}$ |
| $1$ | $6$ | $(1,3,2,4,6,5)$ | $\zeta_{3} + 1$ |
The blue line marks the conjugacy class containing complex conjugation.