Properties

Label 1.2e2_7_29.6t1.1
Dimension 1
Group $C_6$
Conductor $ 2^{2} \cdot 7 \cdot 29 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$812= 2^{2} \cdot 7 \cdot 29 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 84 x^{4} - 110 x^{3} + 2583 x^{2} - 1744 x + 28769 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 12 + \left(27 a + 2\right)\cdot 41 + \left(23 a + 10\right)\cdot 41^{2} + \left(10 a + 34\right)\cdot 41^{3} + \left(32 a + 37\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 a + 3 + \left(13 a + 28\right)\cdot 41 + \left(17 a + 27\right)\cdot 41^{2} + \left(30 a + 33\right)\cdot 41^{3} + \left(8 a + 32\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 10 + \left(13 a + 30\right)\cdot 41 + \left(17 a + 12\right)\cdot 41^{2} + \left(30 a + 1\right)\cdot 41^{3} + \left(8 a + 1\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 5 + 27 a\cdot 41 + \left(23 a + 25\right)\cdot 41^{2} + \left(10 a + 25\right)\cdot 41^{3} + \left(32 a + 28\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 28 a + 26 + \left(13 a + 24\right)\cdot 41 + \left(17 a + 4\right)\cdot 41^{2} + \left(30 a + 18\right)\cdot 41^{3} + \left(8 a + 13\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 28 + \left(27 a + 37\right)\cdot 41 + \left(23 a + 1\right)\cdot 41^{2} + \left(10 a + 10\right)\cdot 41^{3} + \left(32 a + 9\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2,6,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,3)(2,4)(5,6)$ $-1$ $-1$
$1$ $3$ $(1,6,4)(2,3,5)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,4,6)(2,5,3)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,2,6,3,4,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,5,4,3,6,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.