Properties

Label 1.2e2_7_17.6t1.2c2
Dimension 1
Group $C_6$
Conductor $ 2^{2} \cdot 7 \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$476= 2^{2} \cdot 7 \cdot 17 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 48 x^{4} - 62 x^{3} + 903 x^{2} - 616 x + 6461 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{476}(67,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 28 + \left(7 a + 13\right)\cdot 29 + \left(26 a + 11\right)\cdot 29^{2} + 27 a\cdot 29^{3} + \left(24 a + 8\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 20 + \left(21 a + 3\right)\cdot 29 + \left(2 a + 17\right)\cdot 29^{2} + \left(a + 13\right)\cdot 29^{3} + \left(4 a + 17\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 13 + \left(7 a + 10\right)\cdot 29 + \left(26 a + 25\right)\cdot 29^{2} + \left(27 a + 1\right)\cdot 29^{3} + \left(24 a + 13\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 a + 9 + \left(21 a + 12\right)\cdot 29 + \left(2 a + 4\right)\cdot 29^{2} + \left(a + 28\right)\cdot 29^{3} + \left(4 a + 22\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 a + 24 + \left(21 a + 15\right)\cdot 29 + \left(2 a + 19\right)\cdot 29^{2} + \left(a + 26\right)\cdot 29^{3} + \left(4 a + 17\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 24 + \left(7 a + 1\right)\cdot 29 + \left(26 a + 9\right)\cdot 29^{2} + \left(27 a + 16\right)\cdot 29^{3} + \left(24 a + 7\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(1,2,3,5,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,6)(3,4)$$-1$
$1$$3$$(1,3,6)(2,5,4)$$-\zeta_{3} - 1$
$1$$3$$(1,6,3)(2,4,5)$$\zeta_{3}$
$1$$6$$(1,2,3,5,6,4)$$-\zeta_{3}$
$1$$6$$(1,4,6,5,3,2)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.