Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5 a + 28 + \left(7 a + 13\right)\cdot 29 + \left(26 a + 11\right)\cdot 29^{2} + 27 a\cdot 29^{3} + \left(24 a + 8\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 24 a + 20 + \left(21 a + 3\right)\cdot 29 + \left(2 a + 17\right)\cdot 29^{2} + \left(a + 13\right)\cdot 29^{3} + \left(4 a + 17\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 5 a + 13 + \left(7 a + 10\right)\cdot 29 + \left(26 a + 25\right)\cdot 29^{2} + \left(27 a + 1\right)\cdot 29^{3} + \left(24 a + 13\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 24 a + 9 + \left(21 a + 12\right)\cdot 29 + \left(2 a + 4\right)\cdot 29^{2} + \left(a + 28\right)\cdot 29^{3} + \left(4 a + 22\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 24 a + 24 + \left(21 a + 15\right)\cdot 29 + \left(2 a + 19\right)\cdot 29^{2} + \left(a + 26\right)\cdot 29^{3} + \left(4 a + 17\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 5 a + 24 + \left(7 a + 1\right)\cdot 29 + \left(26 a + 9\right)\cdot 29^{2} + \left(27 a + 16\right)\cdot 29^{3} + \left(24 a + 7\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,5)(2,6)(3,4)$ |
| $(1,2,3,5,6,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$1$ |
$1$ |
| $1$ |
$2$ |
$(1,5)(2,6)(3,4)$ |
$-1$ |
$-1$ |
| $1$ |
$3$ |
$(1,3,6)(2,5,4)$ |
$\zeta_{3}$ |
$-\zeta_{3} - 1$ |
| $1$ |
$3$ |
$(1,6,3)(2,4,5)$ |
$-\zeta_{3} - 1$ |
$\zeta_{3}$ |
| $1$ |
$6$ |
$(1,2,3,5,6,4)$ |
$\zeta_{3} + 1$ |
$-\zeta_{3}$ |
| $1$ |
$6$ |
$(1,4,6,5,3,2)$ |
$-\zeta_{3}$ |
$\zeta_{3} + 1$ |
The blue line marks the conjugacy class containing complex conjugation.