Properties

Label 1.2e2_7_157.6t1.1c2
Dimension 1
Group $C_6$
Conductor $ 2^{2} \cdot 7 \cdot 157 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$4396= 2^{2} \cdot 7 \cdot 157 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 468 x^{4} - 622 x^{3} + 74263 x^{2} - 49616 x + 3994081 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{4396}(627,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 17 + \left(19 a + 28\right)\cdot 29 + \left(23 a + 6\right)\cdot 29^{2} + \left(23 a + 25\right)\cdot 29^{3} + \left(16 a + 25\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 2 + \left(9 a + 18\right)\cdot 29 + \left(5 a + 21\right)\cdot 29^{2} + \left(5 a + 17\right)\cdot 29^{3} + \left(12 a + 28\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 16 + \left(9 a + 14\right)\cdot 29 + \left(5 a + 6\right)\cdot 29^{2} + \left(5 a + 19\right)\cdot 29^{3} + \left(12 a + 4\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 a + 27 + \left(9 a + 5\right)\cdot 29 + \left(5 a + 19\right)\cdot 29^{2} + \left(5 a + 4\right)\cdot 29^{3} + \left(12 a + 28\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 21 + \left(19 a + 11\right)\cdot 29 + \left(23 a + 9\right)\cdot 29^{2} + \left(23 a + 9\right)\cdot 29^{3} + \left(16 a + 26\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 6 + \left(19 a + 8\right)\cdot 29 + \left(23 a + 23\right)\cdot 29^{2} + \left(23 a + 10\right)\cdot 29^{3} + \left(16 a + 2\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,3,5,4,6,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,5)(3,6)$$-1$
$1$$3$$(1,5,6)(2,3,4)$$-\zeta_{3} - 1$
$1$$3$$(1,6,5)(2,4,3)$$\zeta_{3}$
$1$$6$$(1,3,5,4,6,2)$$-\zeta_{3}$
$1$$6$$(1,2,6,4,5,3)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.