Properties

Label 1.2e2_5_7.12t1.1
Dimension 1
Group $C_{12}$
Conductor $ 2^{2} \cdot 5 \cdot 7 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_{12}$
Conductor:$140= 2^{2} \cdot 5 \cdot 7 $
Artin number field: Splitting field of $f= x^{12} - 4 x^{11} - 17 x^{10} + 74 x^{9} + 74 x^{8} - 412 x^{7} - 23 x^{6} + 734 x^{5} - 175 x^{4} - 324 x^{3} + 90 x^{2} + 22 x + 1 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_{12}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{4} + 3 x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 9 a^{3} + 12 a^{2} + 5 a + 1 + \left(9 a^{2} + 6 a + 2\right)\cdot 13 + \left(5 a + 12\right)\cdot 13^{2} + \left(9 a^{3} + 7 a^{2} + 8 a + 12\right)\cdot 13^{3} + \left(3 a^{3} + 2 a^{2} + 8 a + 12\right)\cdot 13^{4} + \left(a^{3} + a^{2} + a + 5\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 11 a^{2} + 12 a + \left(9 a^{3} + 2 a^{2} + 11 a + 3\right)\cdot 13 + \left(2 a^{3} + 5 a^{2} + 8 a + 11\right)\cdot 13^{2} + \left(7 a^{3} + 6 a^{2} + 8 a + 1\right)\cdot 13^{3} + \left(2 a^{3} + 12 a^{2} + 8 a + 1\right)\cdot 13^{4} + \left(8 a^{3} + a^{2} + 5 a + 2\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 9 a^{3} + 12 a^{2} + 5 a + 11 + \left(9 a^{2} + 6 a + 3\right)\cdot 13 + 5 a\cdot 13^{2} + \left(9 a^{3} + 7 a^{2} + 8 a + 6\right)\cdot 13^{3} + \left(3 a^{3} + 2 a^{2} + 8 a + 9\right)\cdot 13^{4} + \left(a^{3} + a^{2} + a + 3\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 11 a^{2} + 12 a + 3 + \left(9 a^{3} + 2 a^{2} + 11 a + 1\right)\cdot 13 + \left(2 a^{3} + 5 a^{2} + 8 a + 10\right)\cdot 13^{2} + \left(7 a^{3} + 6 a^{2} + 8 a + 8\right)\cdot 13^{3} + \left(2 a^{3} + 12 a^{2} + 8 a + 4\right)\cdot 13^{4} + \left(8 a^{3} + a^{2} + 5 a + 4\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 4 a^{3} + a^{2} + 8 a + 11 + \left(12 a^{3} + 3 a^{2} + 6 a + 11\right)\cdot 13 + \left(12 a^{3} + 12 a^{2} + 7 a + 8\right)\cdot 13^{2} + \left(3 a^{3} + 5 a^{2} + 4 a + 11\right)\cdot 13^{3} + \left(9 a^{3} + 10 a^{2} + 4 a + 3\right)\cdot 13^{4} + \left(11 a^{3} + 11 a^{2} + 11 a + 5\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 2 a^{2} + a + 8 + \left(4 a^{3} + 10 a^{2} + a + 9\right)\cdot 13 + \left(10 a^{3} + 7 a^{2} + 4 a + 10\right)\cdot 13^{2} + \left(5 a^{3} + 6 a^{2} + 4 a + 11\right)\cdot 13^{3} + \left(10 a^{3} + 4 a + 9\right)\cdot 13^{4} + \left(4 a^{3} + 11 a^{2} + 7 a + 11\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 4 a^{3} + a^{2} + 8 a + 10 + \left(12 a^{3} + 3 a^{2} + 6 a + 8\right)\cdot 13 + \left(12 a^{3} + 12 a^{2} + 7 a + 8\right)\cdot 13^{2} + \left(3 a^{3} + 5 a^{2} + 4 a + 7\right)\cdot 13^{3} + \left(9 a^{3} + 10 a^{2} + 4 a + 1\right)\cdot 13^{4} + \left(11 a^{3} + 11 a^{2} + 11 a + 10\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 2 a^{2} + a + 9 + \left(4 a^{3} + 10 a^{2} + a + 12\right)\cdot 13 + \left(10 a^{3} + 7 a^{2} + 4 a + 10\right)\cdot 13^{2} + \left(5 a^{3} + 6 a^{2} + 4 a + 2\right)\cdot 13^{3} + \left(10 a^{3} + 4 a + 12\right)\cdot 13^{4} + \left(4 a^{3} + 11 a^{2} + 7 a + 6\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 9 }$ $=$ $ 2 a^{2} + a + 6 + \left(4 a^{3} + 10 a^{2} + a + 1\right)\cdot 13 + \left(10 a^{3} + 7 a^{2} + 4 a + 12\right)\cdot 13^{2} + \left(5 a^{3} + 6 a^{2} + 4 a + 8\right)\cdot 13^{3} + \left(10 a^{3} + 4 a + 8\right)\cdot 13^{4} + \left(4 a^{3} + 11 a^{2} + 7 a + 4\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 10 }$ $=$ $ 11 a^{2} + 12 a + 2 + \left(9 a^{3} + 2 a^{2} + 11 a + 11\right)\cdot 13 + \left(2 a^{3} + 5 a^{2} + 8 a + 9\right)\cdot 13^{2} + \left(7 a^{3} + 6 a^{2} + 8 a + 4\right)\cdot 13^{3} + \left(2 a^{3} + 12 a^{2} + 8 a + 2\right)\cdot 13^{4} + \left(8 a^{3} + a^{2} + 5 a + 9\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 11 }$ $=$ $ 4 a^{3} + a^{2} + 8 a + 8 + \left(12 a^{3} + 3 a^{2} + 6 a\right)\cdot 13 + \left(12 a^{3} + 12 a^{2} + 7 a + 10\right)\cdot 13^{2} + \left(3 a^{3} + 5 a^{2} + 4 a + 4\right)\cdot 13^{3} + \left(9 a^{3} + 10 a^{2} + 4 a\right)\cdot 13^{4} + \left(11 a^{3} + 11 a^{2} + 11 a + 3\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 12 }$ $=$ $ 9 a^{3} + 12 a^{2} + 5 a + \left(9 a^{2} + 6 a + 12\right)\cdot 13 + \left(5 a + 11\right)\cdot 13^{2} + \left(9 a^{3} + 7 a^{2} + 8 a + 8\right)\cdot 13^{3} + \left(3 a^{3} + 2 a^{2} + 8 a + 10\right)\cdot 13^{4} + \left(a^{3} + a^{2} + a + 10\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(1,10,11,8,12,2,5,6,3,4,7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character values
$c1$ $c2$ $c3$ $c4$
$1$ $1$ $()$ $1$ $1$ $1$ $1$
$1$ $2$ $(1,5)(2,9)(3,11)(4,8)(6,10)(7,12)$ $-1$ $-1$ $-1$ $-1$
$1$ $3$ $(1,12,3)(2,4,10)(5,7,11)(6,9,8)$ $\zeta_{12}^{2} - 1$ $\zeta_{12}^{2} - 1$ $-\zeta_{12}^{2}$ $-\zeta_{12}^{2}$
$1$ $3$ $(1,3,12)(2,10,4)(5,11,7)(6,8,9)$ $-\zeta_{12}^{2}$ $-\zeta_{12}^{2}$ $\zeta_{12}^{2} - 1$ $\zeta_{12}^{2} - 1$
$1$ $4$ $(1,8,5,4)(2,3,9,11)(6,7,10,12)$ $\zeta_{12}^{3}$ $-\zeta_{12}^{3}$ $\zeta_{12}^{3}$ $-\zeta_{12}^{3}$
$1$ $4$ $(1,4,5,8)(2,11,9,3)(6,12,10,7)$ $-\zeta_{12}^{3}$ $\zeta_{12}^{3}$ $-\zeta_{12}^{3}$ $\zeta_{12}^{3}$
$1$ $6$ $(1,11,12,5,3,7)(2,6,4,9,10,8)$ $\zeta_{12}^{2}$ $\zeta_{12}^{2}$ $-\zeta_{12}^{2} + 1$ $-\zeta_{12}^{2} + 1$
$1$ $6$ $(1,7,3,5,12,11)(2,8,10,9,4,6)$ $-\zeta_{12}^{2} + 1$ $-\zeta_{12}^{2} + 1$ $\zeta_{12}^{2}$ $\zeta_{12}^{2}$
$1$ $12$ $(1,10,11,8,12,2,5,6,3,4,7,9)$ $\zeta_{12}$ $-\zeta_{12}$ $\zeta_{12}^{3} - \zeta_{12}$ $-\zeta_{12}^{3} + \zeta_{12}$
$1$ $12$ $(1,2,7,8,3,10,5,9,12,4,11,6)$ $\zeta_{12}^{3} - \zeta_{12}$ $-\zeta_{12}^{3} + \zeta_{12}$ $\zeta_{12}$ $-\zeta_{12}$
$1$ $12$ $(1,6,11,4,12,9,5,10,3,8,7,2)$ $-\zeta_{12}$ $\zeta_{12}$ $-\zeta_{12}^{3} + \zeta_{12}$ $\zeta_{12}^{3} - \zeta_{12}$
$1$ $12$ $(1,9,7,4,3,6,5,2,12,8,11,10)$ $-\zeta_{12}^{3} + \zeta_{12}$ $\zeta_{12}^{3} - \zeta_{12}$ $-\zeta_{12}$ $\zeta_{12}$
The blue line marks the conjugacy class containing complex conjugation.