Properties

Label 1.2e2_5_43.4t1.1c1
Dimension 1
Group $C_4$
Conductor $ 2^{2} \cdot 5 \cdot 43 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:$860= 2^{2} \cdot 5 \cdot 43 $
Artin number field: Splitting field of $f= x^{4} + 215 x^{2} + 9245 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{860}(687,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 25\cdot 29 + 24\cdot 29^{2} + 18\cdot 29^{4} + 21\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 10 + 22\cdot 29 + 20\cdot 29^{2} + 15\cdot 29^{3} + 9\cdot 29^{4} + 2\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 19 + 6\cdot 29 + 8\cdot 29^{2} + 13\cdot 29^{3} + 19\cdot 29^{4} + 26\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 27 + 3\cdot 29 + 4\cdot 29^{2} + 28\cdot 29^{3} + 10\cdot 29^{4} + 7\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)(2,3)$
$(1,2,4,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)$$-1$
$1$$4$$(1,2,4,3)$$\zeta_{4}$
$1$$4$$(1,3,4,2)$$-\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.