Properties

Label 1.2e2_5_19.6t1.2
Dimension 1
Group $C_6$
Conductor $ 2^{2} \cdot 5 \cdot 19 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$380= 2^{2} \cdot 5 \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 4 x^{4} + 6 x^{3} + 107 x^{2} - 284 x + 749 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 5 + \left(7 a + 30\right)\cdot 31 + \left(20 a + 26\right)\cdot 31^{2} + \left(25 a + 13\right)\cdot 31^{3} + \left(28 a + 1\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 a + 19 + \left(23 a + 6\right)\cdot 31 + \left(10 a + 29\right)\cdot 31^{2} + \left(5 a + 13\right)\cdot 31^{3} + \left(2 a + 2\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 a + 11 + \left(23 a + 29\right)\cdot 31 + \left(10 a + 28\right)\cdot 31^{2} + \left(5 a + 15\right)\cdot 31^{3} + \left(2 a + 20\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 28 + \left(7 a + 21\right)\cdot 31 + \left(20 a + 26\right)\cdot 31^{2} + \left(25 a + 15\right)\cdot 31^{3} + \left(28 a + 19\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 9 + \left(7 a + 14\right)\cdot 31 + \left(20 a + 20\right)\cdot 31^{2} + \left(25 a + 16\right)\cdot 31^{3} + \left(28 a + 8\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 24 a + 23 + \left(23 a + 21\right)\cdot 31 + \left(10 a + 22\right)\cdot 31^{2} + \left(5 a + 16\right)\cdot 31^{3} + \left(2 a + 9\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,4,2,5,3)$
$(1,2)(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,2)(3,4)(5,6)$ $-1$ $-1$
$1$ $3$ $(1,4,5)(2,3,6)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,5,4)(2,6,3)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,6,4,2,5,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,3,5,2,4,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.