Properties

Label 1.2e2_41.8t1.1
Dimension 1
Group $C_8$
Conductor $ 2^{2} \cdot 41 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$164= 2^{2} \cdot 41 $
Artin number field: Splitting field of $f= x^{8} - 41 x^{6} + 533 x^{4} - 2296 x^{2} + 656 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 107 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 80\cdot 107 + 20\cdot 107^{2} + 38\cdot 107^{3} + 8\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 + 30\cdot 107 + 24\cdot 107^{2} + 67\cdot 107^{3} + 45\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 + 36\cdot 107 + 33\cdot 107^{2} + 94\cdot 107^{3} + 23\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 32 + 101\cdot 107 + 91\cdot 107^{2} + 51\cdot 107^{3} + 45\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 75 + 5\cdot 107 + 15\cdot 107^{2} + 55\cdot 107^{3} + 61\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 79 + 70\cdot 107 + 73\cdot 107^{2} + 12\cdot 107^{3} + 83\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 89 + 76\cdot 107 + 82\cdot 107^{2} + 39\cdot 107^{3} + 61\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 100 + 26\cdot 107 + 86\cdot 107^{2} + 68\cdot 107^{3} + 98\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,4,2,8,3,5,7)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$ $c3$ $c4$
$1$ $1$ $()$ $1$ $1$ $1$ $1$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-1$ $-1$ $-1$ $-1$
$1$ $4$ $(1,4,8,5)(2,3,7,6)$ $\zeta_{8}^{2}$ $-\zeta_{8}^{2}$ $\zeta_{8}^{2}$ $-\zeta_{8}^{2}$
$1$ $4$ $(1,5,8,4)(2,6,7,3)$ $-\zeta_{8}^{2}$ $\zeta_{8}^{2}$ $-\zeta_{8}^{2}$ $\zeta_{8}^{2}$
$1$ $8$ $(1,6,4,2,8,3,5,7)$ $\zeta_{8}$ $\zeta_{8}^{3}$ $-\zeta_{8}$ $-\zeta_{8}^{3}$
$1$ $8$ $(1,2,5,6,8,7,4,3)$ $\zeta_{8}^{3}$ $\zeta_{8}$ $-\zeta_{8}^{3}$ $-\zeta_{8}$
$1$ $8$ $(1,3,4,7,8,6,5,2)$ $-\zeta_{8}$ $-\zeta_{8}^{3}$ $\zeta_{8}$ $\zeta_{8}^{3}$
$1$ $8$ $(1,7,5,3,8,2,4,6)$ $-\zeta_{8}^{3}$ $-\zeta_{8}$ $\zeta_{8}^{3}$ $\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.